SHAFT: Serializable, Highly Available and Fault Tolerant

Concurrency Control in the Cloud

By
Yuqging Zhu

Technical Report No. ICT-ACS-SG-201301

July 2013

v s

IHZILINLE Ok COMBNLIMG LECHHOrOeA

Institute of Computing Technology
Chinese Academy of Science

Beijing, China 100190

SHAFT: Serializable, Highly Available and Fault Tolerant Concurrency

Control in the Cloud

Yuging Zhu
Advanced Computer System Research Center
Institute of Computing Technology, Chinese Academy of Sciences

Abstract

Guaranteeing transaction semantics in a highly available and fault tolerant manner is desirable to
application developers. Besides, it is a very valuable feature for database-backed applications. SHAFT is a
pessimistic concurrency control protocol for partitioned and replicated data, which can be distributed across
multiple datacenters. Laying its basis on the Paxos algorithm, the SHAFT protocol guarantees Serializability,
High Availability and Fault Tolerance simultaneously for transactions. The distributed concurrency control
process of SHAFT meets the strict two-phase locking requirements. SHAFT can restart a transaction aborted
due to the inability to lock its data. High availability is guaranteed as read-only transactions are processed
with shorter procedures. Concurrent transactions can be merged together and processed in one SHAFT
instance to reduce costs and latency, while increasing concurrency. Different from other existing transactional
replication protocols, SHAFT allows a client to actively abort a transaction. SHAFT also allows flexible data
partition, replication and distribution, a proper combination of which can reduce costs and improve
performance. SHAFT performs well even under failures. Our experiments show that SHAFT outperforms a
recent related work MDCC, which outperforms other synchronous transactional replication protocols, e.g.

Megastore.

KEY WORDS: transaction; concurrency control; serializability; availability; fault tolerance

SHAFT: Serializable, Highly Available and Fault Tolerant
Concurrency Control in the Cloud

Yuqing Zhu
State Key Laboratory of Computer Architecture
Advanced Computer System Research Center
Institute for Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
zhuyuging@ict.ac.cn

ABSTRACT

Guaranteeing transaction semantics in a highly available and fault
tolerant manner is desirable to application developers. Besides, it is
a very valuable feature for database-backed applications. SHAFT
is a pessimistic concurrency control protocol for partitioned and
replicated data, which can be distributed across multiple datacen-
ters. Laying its basis on the Paxos algorithm, the SHAFT protocol
guarantees Serializability, High Availability and Fault Tolerance si-
multaneously for transactions. The distributed concurrency control
process of SHAFT meets the strict two-phase locking requirements.
SHAFT can restart a transaction aborted due to the inability to lock
its data. High availability is guaranteed as read-only transactions
are processed with shorter procedures. Concurrent transactions can
be merged together and processed in one SHAFT instance to reduce
costs and latency, while increasing concurrency. Different from
other existing transactional replication protocols, SHAFT allows a
client to actively abort a transaction. SHAFT also allows flexible
data partition, replication and distribution, a proper combination of
which can reduce costs and improve performance. SHAFT per-
forms well even under failures. Our experiments show that SHAFT
outperforms a recent related work MDCC, which outperforms other
synchronous transactional replication protocols, e.g. Megastore.

1. INTRODUCTION

High availability and fault-tolerance are two important proper-
ties of systems in the cloud. Nodes of a system can fail; and, an
entire datacenter can also become unavailable. For example, in
June 2012, Amazon’s Elastic Compute Cloud in North Virginia
went down due to thunder storms[6]. Similar outages have been
reported by other service providers such as Google, Facebook, and
others. In many of these instances, failures resulted in data losses.
Besides, even if a system can recover and restart from failures and
losses, the downtime when the system recovers can cause great e-
conomic losses [5, 4]. Therefore, it is important that the software
layer of a system implements measures to guarantee high availabil-
ity and fault-tolerance.

Transaction support is also a very valuable feature for database-
backed applications. Consistency was once relaxed to improve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

availability and fault-tolerance, as consistency, availability and net-
work partition tolerance are in a trade-off relation [14]. However,
the lack of strong consistency semantics, e.g. transaction support,
leads to great difficulty of application development [8]. In recent
years, there are increasing attentions on transaction support in the
cloud. Among all isolation levels, serializability is a much desired
one by applications [32] and guarantees the strongest consistency.

To support scalability, high availability and fault tolerance in the
cloud, there are three fundamental measures, i.e. data partition,
distribution and replication. But these measures increase the dif-
ficulties of supporting transactions. Two phase commit (2PC) is
the most accepted protocol for distributed transaction commit [35],
while two phase locking (2PL) is the most widely used technique
to guarantee serializability [12]. On the other hand, the Paxos al-
gorithm [24] is the most widely known protocol in guaranteeing
high availability and fault-tolerance based on replication. Various
projects are thus proposed to support transactions exploiting the
above three techniques [10, 29, 17]. Nevertheless, there are few
complete proposals supporting transaction and replication over par-
titioned and distributed data with high availability, fault-tolerance,
and serializability guarantees simultaneously.

In fact, transactions over replicated data are inherently different
from those over non-replicated data. With replication, each local-
ized transaction in distributed databases now becomes a distributed
one. We might treat each replica as a different shard and run 2PC
as if in classic distributed databases. But fault-tolerance and avail-
ability will be impaired, as 2PC is a blocking and non-fault-tolerant
protocol [20]. While there exists some fault-tolerant distributed
commit protocol [20], one would think that we can use such pro-
tocol over the basic Paxos algorithm and classic local concurrency
control methods, e.g. 2PL or timestamp ordering [12], to integrate
a solution for the serializable, highly available and fault tolerant
transactional support. In such case, replication, local concurrency
control and distributed commit decision are handled independent-
ly. When there are two concurrent transactions with intersecting
data partitions, the replication component can align one transac-
tion’s writes before another transaction’s writes, but the distribut-
ed commit decision component can decide the two transactions to
commit in a reverse order. This results in inconsistency and thus
non-serializability!

As important as high availability and fault-tolerance is, most
recent proposals for supporting transactions over partitioned, dis-
tributed and replicated data place their basis on the Paxos algorith-
m nonetheless. In these proposals, Paxos-based components are
mainly for replication or atomic commitment. Megastore [10] is
based on the Paxos algorithm and 2PC, but supporting transactions
only within single entity group, while Spanner [17] with the same
basis supports global transactions. Unfortunately, 2PC is block-

ing and not fault-tolerant. MDCC [22] supports transactions across
multiple data partitions with replication based on the Paxos algo-
rithm, but it guarantees some isolation level unknown before but
weaker than serializability. Besides, applications cannot actively
abort a transaction once it starts, which deviates the transaction
definition. The most recent proposal is replicated commit [29],
which layers replication over the distributed transaction support.
As the full replica in each data center is assumed and each datacen-
ter processes transactions independently, there is high possibility
that different datacenters make different decisions on transaction
scheduling, especially when users are submitting transactions from
various geographical locations, such that conflicts among replicas
occur. Although Paxos-CP [24] guarantees serializable transaction-
s based on the Paxos algorithm, it also assumes a full replica and
a transaction service per datacenter such that all transactions in a
datacenter are coordinated by the single transaction service, thus
leading to low concurrency level and scalability.
Despite the challenges of the problem, the work [20] that adapt-
s the original Paxos algorithm for the transactional commit pur-
pose motivates and encourages us. In this paper, we also take an
adaptation approach towards the problem of supporting transac-
tions with serializability, high availability/concurrency, and fault
tolerance guarantees simultaneously. The Paxos algorithm is the
basis to achieve high availability and fault tolerance. We incarnate
the Paxos algorithm differently from other proposals, including the
instance, the consensus, the configuration and the leadership de-
termination. We also update the semantics of majority, such that a
Paxos-based distributed two phase locking procedure is implement-
ed to guarantee serializability. SHAFT allows a client to actively
abort its submitted transaction by using two Paxos instances. The
SHAFT proposal can be implemented in any system that partitions,
distributes and replicates data in a large scale. Even if the parti-
tion, the distribution and the replication is not uniform, e.g. not full
replica in a datacenter or datacenters with different partition sets,
our proposal is also feasible. In this paper, we make the following
key contributions by SHAFT:
e A new distributed concurrency control protocol, which guar-
antees serializability, high availability and fault tolerance si-
multaneously for transactions over the wide-area network.

e A simulation framework that exempts the trouble of protocol
implementation details and that fairly compares concurrency
control protocols, under various configurable conditions.

e Performance results from extensive simulations showing that
SHAFT guarantees stronger consistency with costs similar to
the best counterpart, and providing higher concurrency.

In Section 2 we first introduce some preliminary knowledge that
we heavily rely upon in the presentation of SHAFT. Section 3 de-
scribes SHAFT’s new concurrency control protocol, along with the
correctness proof. Section 4 presents a few mechanisms to re-
duce the cost and improve the performance of SHAFT. We evaluate
SHAFT and summarize a few application indications based on ex-
periments in Section 5. In Section 6 we relate SHAFT to other
works. We finally draw the conclusion and point out some interest-
ing future work in Section 7.

2. PRELIMINARY

We first briefly describe the Basic Paxos algorithm. The key con-
cepts, as well as what can be changed and what must be followed in
an incarnation, are pointed out. The terms used in the description
will be adopted in the presentation of SHAFT to facilitate the dis-
cussion. Besides, the description also serves as a basis to demon-
strate the different incarnation and the updated term meanings of

the Paxos algorithm in SHAFT. Then, we introduce the data model
and the infrastructure that SHAFT is based on. The assumptions
made upon the data model are important as to the scalability and
high availability guarantees.

2.1 Basic Paxos Algorithm
2.1.1 Overview and Key Concepts

Paxos algorithm is for reaching a single consensus among the
set of acceptors. A run of the Paxos algorithm is called an in-
stance. Each instance can only reach a single consensus, disregard
of failures. Four roles exist in the algorithm. They are a proposer,
a leader, acceptors, and learners. The set of acceptors and that of
learners, which together are called a configuration. With 2F + 1
acceptors, an instance can tolerate F' failures [24].

Safety and liveness properties constitute the fundamental cor-
rectness criteria of a distributed algorithm. The safety property of
the Paxos algorithm can be proved even in the face of failures [24].
If the uniqueness of leadership is guaranteed, the algorithm also
has the property of liveness. The famous FLP impossibility result
[19] implies that a reliable algorithm for electing a leader must use
either randomness or real time—for example, by using timeouts.
Anyhow, safety is ensured by Paxos algorithm regardless of the
success or failure of the leader election, providing fault tolerance.
In actual implementation, we can devise various algorithms to elect
aleader, e.g. [7].

Paxos algorithm can be employed for different scenarios requir-
ing a distributed consensus through different incarnations, e.g. repli-
cation [13], coordination service [15] and transaction commit [20].
The four roles of the Paxos algorithm can be flexibly appointed in
an incarnation. To exploit and incarnate the Paxos algorithm for
a new scenario, the concepts of instance, consensus, configura-
tion, and leadership can be flexibly appointed with any concrete
meanings, as long as the following conditions are met. First, an
instance can be uniquely differentiated. Second, each instance can
only reach a single consensus, which can be equally interpreted
by all acceptors and learners. Third, the configuration for an in-
stance stay unchanged and known to any leader until a consensus
is reached, even though some acceptors or learners can fail in the
process!. Fourth, the uniqueness of leadership is key to the liveness
property of the algorithm. Fifth, the basic procedure that constitutes
the main part of the Paxos algorithm must be followed.

2.1.2 Basic Procedure

Each Paxos instance has three phases. Phase 1 and phase 2 have
two sub-phases a and b respectively. A leader initiates a Paxos
instance on receiving a proposal from the proposer. Given that the
instance is start anew, i.e. that no consensus value is ever chosen,
and that the leadership is sure to be unique, the first phase can be
skipped and the initiator can directly proceed to send a phase 2a
message; otherwise, the leader starts from phase la. In phase 1la,
the leader chooses a ballot number bal that it believes to be larger
than any ballot number seen in the instance. The leader sends a
phase 1a message with bal to every acceptor. Phase 1b follows.

In Phase 1b, when an acceptor receives the phase 1a message for
bal, if it has not already performed any action for messages with
a ballot number bal or higher, it responds with a phase 1b mes-
sage consisting of the largest ballot number that it has ever seen,
the largest ballot number that it has sent a phase 2b message with,
and the accepted consensus in the corresponding phase 2b message.

"'A recent improved version of Paxos [26] permits reconfiguration
with the help of an auxiliary configuration master, but it transforms
the problem of a single leader into one of a non-failable configura-
tion master.

replicas

(acceptors/
learners) phase/la \ ph%a \
hase\lb
replica 1 P phase\Zb
(leader)
phase
client request
(proposer)

Figure 1: Roles and phases in Paxos algorithm for replicated
state machines.

The acceptor ignores the phase 1a message if it has performed an
action for a ballot numbered bal or greater. Now comes phase 2a.

In phase 2a, if the leader has received a phase 1b message with
bal from a majority of the acceptors, it can choose the consensus
value for this instance based on the following logic. If none of the
majority of acceptors reports accepting any consensus before, the
leader decides the consensus value, but usually picks the first value
proposed by the proposer. Otherwise, let tt be the maximum ballot
number of all the reported phase 2b messages, and let My, be the set
of all those phase 2b messages that have ballot number . All the
messages in My, have the same consensus v, which might already
have been chosen. The leader has to set the consensus to v. Finally,
the leader sends a phase 2a message with the consensus and bal to
every acceptor. Phase 2b comes next.

In phase 2b, when an acceptor receives a phase 2a message for
a consensus v and bal, if it has not seen a larger ballot number,
it accepts v as the consensus, and sends a phase 2b message for v
and bal to the leader. The acceptor ignores the message if it has
already seen a higher ballot number. The following phase 3 ends
the process.

In phase 3, when the leader has received phase 2b messages for
v and bal from a majority of the acceptors, it knows that v has
been accepted as the consensus and communicates that fact to all
interested processes, usually learners and the proposer, with a phase
3 message.

2.2 Data Model and Infrastructure

Our implementation of SHAFT runs on a key-value store, but
SHAFT is a distributed concurrency control protocol that is agnos-
tic to whether the database is relational, or is a key-value store. We
target databases that are partitioned and distributed. Distribution
is based on partitions, which are called shard and replicated. The
size of the shard can be as large as a whole database, or it can be as
small as a data unit for operation, e.g. record. Replication can be
uniform, i.e. each partition with the same replica number, or non-
uniform. All replicas of a shard are peers in the sense that they can
be equally accessed by users. Each shard is uniquely identified by
its ID. The IDs of all shards can be ordered monotonically, i.e. there
exists a least ID among a set of IDs. System nodes are also uniquely
identified by their IDs and located in one or more datacenters. Each
system node hosts a subset of shards. Note that, the above assump-
tions are necessary and common, as the three techniques of data
partition, distribution, and replication, all of which are implement-
ed in almost all NoSQL databases [1, 3, 2], are the fundamental
techniques to guarantee scalability and high availability.

We assume the replicated state machine (RSM) [23] model for
each replica. Each replica of a shard is an RSM, whose state is de-
terministic by its corresponding sequence of operations. The sys-
tem node hosting a shard executes the sequence of operations for
the shard to change its state. Usually, RSM model is implemented
as a log as in Megastore, though this is not necessary. The Paxos
algorithm can be exploited for fault-tolerant replication based on

the RSM model. In such exploitation, the leader is chosen among
all replicas of a replica. All replicas of the shard constitute the ac-
ceptors and the learners. At any moment, only one Paxos instance
is allowed for one shard. The proposer is the client. Figure 1 illus-
trates the execution process of the basic Paxos algorithm for RSM.
Notice that, phase 3b message is not sent to learners, i.e. replicas,
as they already learn them as acceptors.

3. THE SHAFT PROTOCOL

SHAFT integrates the replication and the concurrency control in
transactional databases, providing a complete concurrency control
protocol for transactions over partitioned, distributed and replicat-
ed data. Different from other existent proposals, SHAFT treats a
singular read/write operation over replicated data as a transaction.
The integration of replication with concurrency control makes a
complete alignment of consistency levels possible, which will be
discussed in the future work section.

Figure 2 illustrates the typical sequence of messages and oper-
ations when using SHAFT. SHAFT exploits the Paxos algorithm
as the basis. Each transaction corresponds to two Paxos instances.
One of the instance is to support users’ request of abort after ini-
tiating a transaction. We call this as the decision instance and the
other the processing instance. If the transaction commit decision
can be made locally by each shard or the transaction is read-only,
SHAFT requires only the processing Paxos instance. Transac-
tions can be uniquely identified by their IDs, which can be gener-
ated distributively by hashing functions. Thus, the Paxos instances
of a transaction can be uniquely identified as well.

3.1 The Processing Instance

The main part of the SHAFT protocol is the processing Paxos
instance, which defines the major processing flow. In each process-
ing instance, the client that submits a transaction takes the proposer
role. All replicas of all shards accessed by a transaction takes the
roles of acceptor and learner. Among all acceptors and learners,
one of them is chosen as the leader. The choice of leader is through
some predefined rule as illustrated in the following leader election
part. With the predefined rule, even the client can find out the leader
of a transaction. As long as the leader is alive, the leader is unique
throughout a transaction. In sum, the configuration is static and
known to the leader throughout the processing instance. In the fol-
lowing, we describe the whole process of the processing instance,
pointing out the adaptations where they first occur.

Leader election. On submission of a transaction, the client first
collects all shards accessed by the transaction. An access can be
a read or a write. Among all shards, there exists a shard s with
the least ID. The client chooses the system node with the least ID
among all nodes hosting replicas of s. This chosen system node
becomes the leader in the processing instance.

A client submits the transaction to the chosen leader, which s-
tarts the processing instance. The leader thus enters phase 1a. The
transaction information is included in the phase 1a message sent by
the leader. Receiving a phase 1a message, an acceptor locks the
current position of its log and enters phase 1b. If the current log
position is already locked by other transactions, the acceptor adds
a reject vote in its phase 1b message; otherwise, the current log
position and an accept vote are included.

A different consensus. Note the changes as to the basic Pax-
os algorithm here. The consensus of the processing instance is
whether to execute the transaction at the current position of each
replica’s log, such that reads of the transaction return values corre-
sponding to the current position and writes, if committed, are ap-
plied at the current position. Here, current position is interpreted

log pos reserved write values/
read values roll back

replicas of
all shards . l l
(acceptors/ f \ phase 1b @ phase 2b ,4
learners) I”@“‘]ock/abon i \rval, commit/abort /
phase 1a/ \ i
txn info/ I ®phase a /
leader shard / ‘§ txn iffo ‘:'phase 3
(leader) 4 : A commit/abort
tart kxn decision ‘\‘
client instance :‘
(proposer) DS2PL P DS2PL
Lock expanding phase Lock shrinking phase

Figure 2: Typical sequence of messages and operations when
using SHAFT. Steps 2 and 3 are needed only when transac-
tion leader failures happen.

into different numbers by different shards. Thus, when incarnating
the Paxos algorithm into the processing instance, the message sent
in each phase changes. The replicas also need to take transaction
processing operations accordingly.

In phase 2a, the leader waits until all acceptors respond or it
times out. Then it proceeds to check if the majority condition is
satisfied. If the majority condition is not satisfied, the leader sends
out a phase 2a message with the abort consensus; otherwise, the
leader adds the log positions voted by the majority and the commit
consensus to its phase 2a message.

A different majority. Another change in the incarnation of the
Paxos algorithm is the interpretation of majority. The majority con-
dition now represents the following conditions: (1) there are a quo-
rum of replicas voting for each shard involved in the transaction; (2)
for each shard, a quorum of replicas vote the same position with the
same accept or reject decisions.

On receiving a phase 2a message with the commit decision, an
acceptor reads values requested by the transaction and sends a phase
2b message with the read values, the log position and the commit
consensus. If the phase 2a message indicates to abort, the acceptor
releases its lock to the current log position and replies to the leader
with a phase 2b message indicating the abort.

The leader again waits until receiving all acceptors’ phase 2b
messages or it times out in phase 3. Then, it proceeds to check if
there are a majority (or quorum) of replicas voting for each shard
involved in the transaction. If so, it executes the transaction logic,
and decides the transaction outcome by checking the majority votes
for each shard. If all majority votes of all shards are to commit,
then the transaction outcome is commit; otherwise, abort. A phase
3 message is sent out accordingly.

If an acceptor receives a phase 3 message with commit decision,
it applies all writes and releases the lock of the current position. On
an abort decision, the acceptor just releases the lock.

3.2 The Decision Instance

Compared to the inability of supporting active transaction abort
by user in other Paxos-based concurrency control approaches, e.g.
MDCC, SHAFT supports the active transaction abort by client.
This is achieved by including a decision instance in SHAFT.

As demonstrated in Figure 2, the decision instance is activated
before phase 3. The consensus for the decision instance is whether
to commit the transaction and what order to apply the committed
writes. Note that, the actual values for the consensus are decided
by the leader. The decision instance leader is still the leader of the
processing instance. The acceptors and the learners are different.
Only replicas of the leader shard are the acceptors. The learners
are those to recover a transaction. The acceptors of the decision
instance store the accepted value next to that of the processing in-

stance. Note that, the decision instance does not need a phase 3.
After the leader collects a majority of phase 2b messages in the de-
cision instance, it sends out the phase 3 message of the processing
instance. Besides, if no failures even happen and the leadership is
unique, which is the common case, the decision instance can skip
phase 1 and directly move to phase 2.

The main function of the decision instance is to survive the user
decision of the transaction outcome over leader failures. On lead-
er recovery, the new leader can always reach consistent transaction
decisions by restarting the processing and the decision Paxos in-
stances.

3.3 Lock Acquisition Failure and Restart

The concurrent processing of cross-partition transactions with
intersecting shard sets can compete for the same shard, but both
abort due to the competition. For example, transaction 77 accesses
shards X,Y,Z and T, accesses Y,Z,A. If T; locks X,Y and T5 locks
A, Z, then the acceptors for Z have to vote reject on 77 and those for
Y also vote reject on 7,. Such leads to the abort decisions of both
Ty and T, according to the current SHAFT protocol.

To restart the transaction after deadlock abort, we must first dis-
tinguish the fail-to-lock from the fail-on-consistency-check in the
reject vote by the acceptor. If the acceptor cannot lock a requested
shard, it votes reject; or, if it finds the transaction does not meet
the consistency conditions, e.g. predefined constraints, it also votes
reject. Therefore, we improve the SHAFT protocol by giving ac-
ceptors three choices instead of two. The three choices are lock-
Reject, checkReject, and accept. Both lockReject and checkReject
are called reject. When sending a phase 1b or phase 2b message,
an acceptor votes lockReject on failing to lock and checkReject on
consistency check failures.

The processing logic of the leader must also be adapted. In phase
2a and phase 3, if Q = |total —majority| votes from replicas of any
shard include reject votes and all reject votes are lockReject, the
leader marks the instance as toRestart. After phase 3, the toRestart
instance does not end at the leader. Rather, the leader waits for a
random time and restarts as if receiving a proposal from the same
transaction client again. Note that, the leader will only restart a
transaction when it receive no other reject votes, i.e. checkReject,
except for lockReject. Besides, this toRestart must be proposed
together with the transaction outcome decision as the consensus
for the decision instance, in order to preserve fault tolerance.

However, on the transaction restart due to lock acquisition fail-
ures, the transaction gets a new unique transaction ID. The reason
is that the consensus, i.e. abort, has already been reached in the
previous instance. With the same transaction ID, it means the same
instance, thus the consensus will never change. Thus, the leader
restarts a fail-to-lock transaction with a new unique ID and in new
processing/decision instances.

3.4 Fault Tolerance and Protocol Correctness

To prove that SHAFT is fault tolerant, we need only first demon-
strate that it preserves the safety and the liveness properties of the
Paxos algorithm. Secondly, we need to present measures for leader
failure handling.

Protocol Correctness. We briefly sketch an intuitive proof of
the correctness of SHAFT. A formal presentation of the proof is
left for future work. Recall that, in Section 2, we stated that a valid
incarnation of the Paxos algorithm can give any concrete meanings
to the instance, the consensus, the configuration, and the leadership
concepts without hurting the safety and the liveness properties, as
long as the five conditions are met. Examining the SHAFT proto-
col, we can easily see all those conditions are satisfied.

First, the processing and the decision instances of SHAFT can
be uniquely identified by the corresponding transaction ID. Sec-
ond, the processing instance only reaches the single consensus of
whether to execute the transaction at the current position of each
replica’s log and the decision instance only reaches the single con-
sensus of whether to commit the transaction and what order to ap-
ply the committed writes. Third, all shards and their replicas in-
volved in the transaction constitute both instances’ configuration,
which remains unchanged and known to any leader that is chosen
among the acceptors. Fourth, the strict ordering of shard IDs estab-
lishes the unique leadership, which is guaranteed even on failures as
described in the following. Fifth, the basic procedure is followed,
except for the majority condition.

Now, we need only prove that SHAFT’s interpretation of ma-
Jjority does not impair the protocol correctness. In the correctness
proof [24] of the Paxos algorithm, the majority condition is only to
guarantee that there still exist acceptors/learners to remember and
tell the progress of the algorithm execution. The first statement of
our majority interpretation for the processing instance can make the
above guarantee. The second statement is to strengthen the condi-
tion that there must be enough acceptors voting the same position
and the same decision. This cannot violate the guarantee made by
the first statement. Besides, as long as there are more than a quorum
of correct replicas for a shard, the second statement can naturally
follow from the first one.

However, the majority interpretation can affect the tolerable fail-
ures. Although all replicas of all shards accessed by a transaction
act as acceptors and learners in the processing instance of SHAFT,
the number of tolerable failures remains to be F, where the least
replica number among all shards’ replica numbers is 2F + 1, ac-
cording to SHAFT’s majority interpretation. The decision instance
also tolerates the same number of failures, i.e. F.

Leader Failure Handling. We take a timeout plus random back-
off approach towards leader failure handling. Each acceptor in the
transactional instance times on how long it receives responses from
the current leader. If it times out, it first probes the leader. On
receiving no response, it requests the next leader by the leader se-
lection rule to resume the transaction processing. The new leader
can then resume the transaction processing from the first phase of
the processing instance or the decision instance.

If the original leader becomes active again, there can be a com-
petition of leadership. The non-uniqueness of leaders in a Paxos
instance can impair its liveness property. Therefore, we exploit the
random backoff technique in such failure recoveries. That is, on
not acquiring the leadership, any competing substitute leader waits
for a random time before its next attempt to obtain the leadership.

If a decision has already been decided by the last leader, the de-
cision must have been accepted by the decision instance. The new
leader will get to know the chosen decision after re-running the de-
cision instance. Then the new leader must make the same decision
as indicated by the consensus of the decision instance. Otherwise,
the new leader can choose a transaction outcome freely.

In comparison to MDCC, we are employing a leader for each
transaction, thus the failure of the client cannot impact the liveness
and safety properties of the SHAFT protocol. Besides, as the leader
is uniquely chosen among all acceptors, the liveness of the SHAFT
protocol is guaranteed, as long as the number of failures is no more
than what SHAFT can tolerate.

3.5 The Proof of Serializability — DS2PL

At present, we have been certain that SHAFT can execute trans-
actions in a fault-tolerant way. In the following, we briefly sketch
an intuitive proof of the serializability of SHAFT in transaction
processing.

Recall the processing procedure of SHAFT. It locks all shard-
s to read or write before transaction processing in the processing
instance. The locking forbids any concurrent operations by other
transactions on the same shards. That is, the locks are exclusive.
Besides all locks are not released until the transaction commits af-
ter the decision instance. The locking of SHAFT is in fact strong
strict two-phase locking (SS2PL) [33]. No concurrent transactions
can be processed over any of the shards accessed by a transaction.

To increase concurrency, we can relax the locking procedure.
We have a transaction release its locks on all shards that the trans-
action only reads and not writes, once all read values are returned,
i.e. immediately after sending the phase 2b message in the process-
ing instance. This turns SHAFT’s locking into the strict two-phase
locking (S2PL). The expanding phase of S2PL ends immediately
after an acceptor sends the phase 2b message in the processing in-
stance. This is also when the shrinking phase of S2PL starts. All
locks on shards to be written are not released until the transaction
commits in the decision instance. As SHAFT is a distributed proto-
col, we call the locking of SHAFT as distributed strict two-phase
locking (DS2PL).

SS2PL, S2PL, and thus DS2PL are all proper subclasses of the
two-phase locking (2PL). 1t is proved and well known that 2PL
guarantees serializability [12]. Note that, all replicas of a shard nev-
er evaluate to different states before applying a transaction’s writes.
Although failures can lead to the divergence of replica states, the
recovered replicas can catch up by copying and processing virtu-
al logs from the correct replicas, as illustrated by Megastore [10].
Thus, SHAFT guarantees single-copy transaction histories. Then
we accordingly deduce that SHAFT guarantees serializability.

3.6 SHAFT Pseudocode

Up to now, we have the complete SHAFT protocol in its basic
version. We list the pseudocode of the SHAFT processing instance
in algorithms 1, 2 and 3, with the used symbols and variables de-
fined in Table 1. The pseudocode of the decision instance is not list-
ed because we think its pseudocode can be easily obtained through
a slight modification to that of the processing instance.

For the processing instance, the codes for the client, the accep-
tors and the learners are in Algorithm 1, while those for the leader
are in Algorithm 2. The pseudocode in Algorithm 3 defines the im-
portant majority condition and the randomBackoff process for the
leader.

A client starts a transaction by calling the INITTRANSACTION (tx)
function on line 1. Leader election rule is executed on line 3. The
leader processes the transaction request from line 53. The begin-
ning of each phase is signified by receiving messages from the pre-
vious phase. For example, an acceptor receiving a Phase2a mes-
sage starts the Phase 2b (lines 10-11, 30-45). On leader failures and
local timeouts, an acceptor requests the resume of the transaction
execution (lines 28-29, 44-45).

The leader decides whether a consensus has been reached for
the processing instance in the MAJORITY function (lines 106-122).
The first statement of the consensus for the processing instance is
checked on line 109, while the second statement is checked on lines
111-121. If the majority condition is not satisfied, the leader will
retry after a random backoff (lines 65, 73).

The transaction commit decision is made by the leader upon all
collected votes from acceptors (lines 70-80). If the transaction is
aborted due to lock contention, the leader restarts the transaction
(lines 75-76). The leader further makes the consensus decision for
the decision instance on lines 96-100. It then triggers the decision
instance on line 101. The final decision is sent to all acceptors
and the client on line 103. An acceptor processes the decision and
releases the locks on lines 46-50.

Table 1: Definition of symbols for SHAFT pseudocode.

Symbols | Definitions

tx the transaction

Sty the set of all shards accessed by #x

s a shard

H all nodes hosting replicas of shards in S;

l a leader

m ballot number

Simsg set of all received messages

Sy, set of (vt, pos) pairs by majority replicas of all shards
0 a quorum number of a set

0 the size of a set minus the quorum Q

vt a vote of acceptance vt, of rejection vt,

Vi [Vire reject vote due to fail-to-lock/fail-on-consistency-check
ups writes of the transaction

ldrBal the leader’s current ballot number

mbal the largest bal an acceptor ever sees

My the accepted bal in an acceptor’s message
baly,vt, | the bal and the vote an acceptor accepts

pos. the current least unused log position

rval values returned by reads

restart whether a leader restarts 7x on a fail-to-lock abort

4. IMPROVEMENTS

Paxos-based protocols are said to be costly due to multiple com-
munication round trips. Thus, many efforts [25, 27] have been
devoted to reducing the costs. In this section, we discuss a few
improvements which can be made upon SHAFT to increase avail-
ability and concurrency, but which are not limited to Paxos com-
munication reductions.

4.1 Read-Only Transactions - Availability

A read-only transaction, even one with only a single read oper-
ation, is treated as a complete transaction in SHAFT. Each trans-
action must go through the whole process of SHAFT. This great-
ly reduces the availability of the database system, especially when
read-only transactions form the major part of user requests. We can
improve availability through the following measures.

Review the processing procedure of SHAFT in Figure 2. All read
values are returned in step). Locks are released at all replicas of
read-only shards. If a leader receives the transaction request from a
client, the leader can be certain that the following processing is not
a recovery, such that the SHAFT’s process can skip steps @) and
. That is, in a correct process, only steps @ and Q) are required
for a read-only transaction. The leader can respond to the client
immediately after step ©), skipping the decision instance and step
©®. Be aware that, the leader is necessary here in case of the fail-to-
lock abort. This involves merely two communication round trips in
all. Serializability is nevertheless guaranteed for all transactions.

We can further let the client send its read-only transaction to any
active replica of a shard it accesses. The replica reads the current
value and responds to the client. At the same time, transaction-
s with writes are processed in normal SHAFT procedures. Since
writes are not applied until a transaction commits, we can still guar-
antee read-committed consistency level for all read-only transac-
tions at least.

Among these read-committed transactions, if a transaction has
only one read operation, it can read outdated data committed by an
early transaction; but when a transaction consists of multiple read
operations, it can exhibit the read-skew anomaly [11]. Consider
transaction 7y that reads X,Y and 77 that writes X,Y. Due to com-
munication delay, Ty reads the value of X before 77 commits and
the value of Y written by the committed 77. The phantom anoma-
ly is also possible. However, the fuzzy read anomaly will never
occur, since read operations are always executed only once on the

Algorithm 1: Pseudocode for SHAFT - client, acceptor, learner

1 Procedure INITTRANSACTION(?x) // client

2 s < the shard with the least ID in S;,;
3 [< the live node hosting a replica of s and with the least ID;
4 send Proposeltx, Sy, H] to [;
5 wait for response from /;
6 Procedure RECEIVEACCEPTORMESSAGE(msg) // acceptor
7 switch msg do
8 case Phasela[m, x]
9 | PHASE1B(m,tx,1); break;
10 case Phase2a[m,tx, vt]
11 | PHASE2B(m,tx,vt,1); break;
12 case commit[tx,up|
13 ‘ PROCESS (tx, v, ups); break;
14 case abort|ix]
15 | PROCESS(tx,vt,0); break;
16 Procedure PHASE1B(m,tx,1) // acceptor,learner
17 if tx locks pos. V —lock(pos.) then // not locked by others
18 if instance(tx) never seen then
19 ‘ mbal <+ —1, bal, < null, vt, < null;
20 if mbal < m then
21 mbal < m;
22 if bal,, # null then
23 | send Phaselblmbal,bal,,vt,, posc] to [;
24 else
25 | send Phaselbmbal,baly,,vta, posc] to I;
26 else
27 send Phaselb[m,—1,vt,;,—1] to [;
28 if tx), locks posc AtimesOut(tx,) then
29 | | send Recovery[tx,,m] to the new leader;
30 Procedure PHASE2B(m,tx,vt,l) // acceptor,learner
31 if tx locks posc V —lock(pos.) then // not locked by others
32 if mbal < m then
33 mbal,baly <— m, vt, < vt;
34 if vt == commit then
35 read rval;
36 if consistencyCheck() then vt,, < vt ;
37 else vt, < vty¢;
38 else unlock(pos.);
39 send Phase2b[baly,vtp, pos.,rval] to [;
40 if tx is readOnly on pos. then
41 | unlock(pos.) // release read locks
42 else
43 send Phase2b|m,vt,;, —1,null] to [;
44 if tx), locks posc AtimesOut (tx),) then
s | | send Recovery[tx,,m] to the new leader;
46 Procedure PROCESS(tx,vt,ups) // learner
47 if tx locks pos. then
48 if vt == commit A ups # 0 then
49 | apply ups;
50 unlock(pos.) // release write locks

data. By this, we can deduce a new transaction consistency lev-
el Read-Committed+, which is stronger than the read-committed
consistency level but weaker than the repeatable-read consistency
level.

Notice that, the changes to how we process read-only transac-
tions do not have any influence on transactions with writes. Thus,
all other non-read-only transactions are still guaranteed with seri-
alizability.

4.2 Merge of Instances

Now, we consider the situation when the processing/decision in-
stances of multiple transactions can be merged into one. Such
merge is possible only because we have chosen the RSM model
and SHAFT locks the virtual log position instead of the real data.

According to the leader selection criteria of SHAFT, the same
system node will be chosen as the leader for transactions with the

Algorithm 2: Pseudocode for SHAFT - leader

Algorithm 3: Pseudocode for SHAFT - Key Steps

47 Procedure RECEIVELEADERMESSAGE(msg) // leader
48 SimsglsSmsgz < O,restart < false;
49 switch msg do
50 case Recovery[tx, m|
51 ldrBal < m+ rand();
52 PHASE1A(ldrBal,tx,H);break;
53 case Propose|tx, Sy, H|
54 ldrBal <0, S, < 0;
55 foreach s € S, do
56 L Sy SpU(vig,—1);
57 PHASE2A(tx,S,,H); break;
58 case Phaselb[m,mg,vt, pos|
59 Smxgl — Smxgl u {msg};
60 if timeout V/ | Sy,501| == |H| then
61 Sp < 0;
62 if MATORITY (Synsg1, S1x,Sp) then
63 | PHASE2A(1x,S,,H);
64 else
65 RANDOMBACKOFE(tx,ldrBal ,H);
66 break;
67 case Phase2bm,vt, pos, rval]
68 Sisg2 < Smsg2 U{msg} Vit pinas < commit;
69 if timeout V |Sy,5¢2| == |H| then
70 foreach s € S;, do
71 S,’fm,g {msg,|msg, € Sysg Amsg, sent by
h AT E RS}
72 if |SR .| < O then
73 RANDOMBACKOFE(tx,ldrBal ,H);
74 return
75 if [{msg|vtnsg = vt1,Vimsg € Sf;”g}| > Q then
76 | restart < true;
77 else if vt == Vi, Imsg € Sf,xg then
78 || Vifina < abort;
79 if vt i) == abort then restart < false;
80 else if restart then vt s, < abort;
81 PHASE3(tx, V! finat, H, Spvat)
82 break;
83 Procedure PHASE1A(m,x,S4) // leader
84 | send Phaselalm,tx] to all h € Sy;
85 Procedure PHASE2A(tx,S),S4) // leader
86 if S, == 0 then vt ;) < Vv1;;
87 else
88 VI final < Via;
89 foreach (vi;, pos;) € S, do
90 | if viy == v then viging < viy;
91 | send Phase2a[ldrBal,tx,tfinai] to Sa;
92 Procedure PHASE3(tx,vt,84,5,) // leader

93 if ups == 0 then // read-only

94 send S, to client;
95 return
96 if vt == commit then
97 Vt fingl $— commit [tx,ups];
/* process tx over S;; Vifi;q can change */
98 else
99 VE final <— abort|tx];
100 if restart == true then
| /* | restarts tx in rand() time */
101 DecisionInstance_Paxos(txn,ldrBal, vt jinq restart);
102 send Vi fiyq t0 S and client;

same shard s,,;,, as their smallest shard. For example, transaction
Ty accesses D, X,Y and T; accesses D,W,Z. D is the smallest shard
among all shards of 7} and 7, respectively. Thus, the system node
with the least ID among all nodes hosting replicas of D is the leader
for the processing instances of both 77 and 7>. When a leader si-

106 Procedure MAJORITY (S5, Six, Sp)

107 foreach s € S;, do
108 S,’fmg < {msg,|msg, € Sypsg ANmsg, by hyAr € R} 5
109 if |S§mg| < Q thenreturn false; // not enough replies
110 e —1;
111 foreach msg wag do
112 if mg # null A\m}™ < m, then
113 mi — my;
114 (Ws’POSs) — (Vtmsgvpo‘ymxg);
115 if m)'* < 0 then
the (vote,position) pair by the most
116 (vis; poss) messages in Smg ’
117 countg + number of messages with (vtg, poss);
118 if count; < Q then
119 Sp < 0;
120 break;
121 | Sp<Spu (vts, poss);
122 | return true;
123 Procedure RANDOMBACKOFFE(tx, bal, Sy)
124 bal < bal +rand();
125 sleep(rand());
126 | PHASElA(bal,tx,S);

multaneously receives propose messages for multiple transactions
from multiple clients, the leader merges the processing instances of
these transactions and processes them in one processing instance
and one decision instance, based on the following rules.

The leader merges shards of the concurrent transactions 7' =
Ti,...,T; into S7. Now, a shard s, € St is read-only if no trans-
action in 7 writes s,. Except for the read-only shards, the lock on
any other shard in S7 is held till the end of the processing instance.
For acceptors, operations from all transactions of 7" are now treated
as if they were from a single transaction.

However, the leader always processes each transaction separate-
ly. That is, if a shard is involved in multiple transactions, the leader
processes the message sent by each replica of the shard once for
each transaction. An abort decision is sent to a shard if only al-
1 transactions accessing the shard abort. The restart is separately
marked for each transaction. When the leader executes transactions
of T together in phase 3, it guarantees serializability in the execu-
tion. Writes on the same record by multiple transactions of 7' can
be merged into one before inserting to the write set ups. In the
basic version of SHAFT, a vector (txn,ldrBal, vifipq, restart) is
recorded for each transaction decision (Algorithm line 101). Now,
a matrix is needed. Each row of the matrix is the vector for a trans-
action. The decision is translated into multiple decisions for 7’s
transactions respectively. Each transaction’s decision is sent back
to its submitting client.

4.3 Data Granularity and Distribution

We assume a shard as the unit for transaction operations. A virtu-
al log is correlated with each shard. To further improve concurren-
cy and availability, we can reduce the data granularity by reducing
the size of data partitions. However, the number of virtual logs to
be maintained by a system node increases as the data granularity
decreases. When the data granule is record-level, a node will have
to maintain an astonishing number of virtual logs. This is obviously
too costly. Besides, the reduction of data granularity also reduces
the possibility of merging instances (Section 4.2). Anyhow, there
is a trade-off here to be considered.

Customized replication and distribution can significantly improve
bandwidth usage and user experience [21]. SHAFT allows the flex-

ible replication, distribution and partition of data globally. If the
majority of shard replicas accessed by a transaction locate in the
same datacenter, SHAFT can reduce the processing time by setting
an adequate timeout duration (Algorithm lines 60 and 69). As long
as messages from a majority are received, SHAFT can progress and
decide. The lagging replicas in other datacenters will finally learn
the progress and the decision later.

S. EVALUATION

We evaluate SHAFT and compare it to the most related solution
MDCC by using a simulator for large-scale distributed protocols
and based on extensive simulations. We choose MDCC because it
outperforms other contemporary transactional replication protocols
and becomes widely known recently. Both SHAFT and MDCC are
based on the Paxos algorithm. Although the pseudocode of many
Paxos-based protocols has limited lines of codes, the actual im-
plementation usually demands non-trivial engineering efforts [16].
Besides, how well these protocols are implemented by codes great-
ly affects the actual system performance. Therefore, we choose the
simulation method for evaluation. In the following, we first elabo-
rate the simulation settings that enable the fair comparison. Then
we proceed to present various evaluation results based on the sim-
ulations.

5.1 The Simulation Settings

In the simulations, we exploit PeerSim [30], a well-known net-
work simulator capable of verifying the correctness and compar-
ing the performance of network protocols. Distributed concurrency
control protocols like SHAFT and MDCC are one type of network
protocols. This fact validates our choice and exploitation of Peer-
Sim in the evaluation.

We take the event-based mode of PeerSim. In each experiment,
PeerSim keeps a virtual clock that ticks by cycles. The throughput
and the message delay is computed against the clock time. Each
message delivery is considered an event. Each operation process-
ing takes a unit of virtual clock time, i.e. cycle. Each experiment
will continue for a given length of virtual clock time. Our imple-
mentations are based on a previous Paxos simulator implentation?.

In simulations with PeerSim, we can implement not only the tar-
geted protocol, but also many aspects of conditions under test. For
example, we can specity in the control implementations about how
nodes connect to each other, how messages are sent to and arrive
at each node, how workloads are applied to the system, etc. By
such, we can simulate systems with multi-datacenters, and observe
system behaviors under different workloads. Furthermore, Peer-
Sim also supports simulation on node failures and communication
channel breaks. Thus, we can also watch how a system is influ-
enced by different failures. In fact, the simulator can truly simulate
the actual situation if given precise specification.

SHAFT and MDCC [22] are both implemented in the simulator.
To enable a fair comparison, we comply tightly with and borrow the
core logic of the open-source implementation of MDCC3. In each
unit of virtual clock time, we let the simulator run both SHAFT and
MDCC over the same simulated network of nodes. The same work-
loads and the same failure conditions are applied to both SHAFT
and MDCC. However, the two protocols run independently, and
the results are collected separately. Our implementations and the
source codes for the above mentioned simulators, together with the
simulation results, can be downloaded*.

2 A fault-tolerant FSM. http://peersim.sourceforge.net/#code
3https://github.com/hiranya91 1/mdcc
“http://prof.ict.ac.cn/~yuqing/SHAFT

]

c

S

-g 100

2 o0 S~ ~e
F 80

3 A~

£ 70

E 60

8 g B—EB—Q —O—o— g
8 50 —©
o

o 40 SHAFT-all —e— AL

8 H MDCC-all —& ~AC

c 30 [| SHAFT-WriteTxn —&—

8 00 L MDCC-WriteTxn —A— i

[

L. 1 2 5 10 20 50 100

Units of Workloads

Figure 3: The percentage of committed transactions as work-
loads increase. SHAFT outperforms MDCC as workloads in-
crease.

In the evaluation, we simulate a multi-datacenter scenario. The
number of datacenters is set to three or five in different experiments.
The communication latencies between datacenters are randomly
chosen from 20 to 200 times of the intra-datacenter communica-
tion, which we set to one virtual unit of time in the experiments.
We set the number of nodes in each datacenter to 50. The total
number of unique shards is 1000, which must be multiplied by the
replication factor to get the total number of shards. Data shards are
distributed to nodes. With regard to data distribution, we consider
three cases: (1) replicas are placed across datacenters randomly by
uniform distribution; (2) a majority of replicas are placed in a data-
center closest to the transaction clients; (3) a complete copy of data
shards is placed at each datacenter.

We generate transactions for different workloads. Transactions
randomly access data shards, following either the uniform distri-
bution or the Zipfian distribution. The percentage of cross-shard
transactions is set to 20%. Note that, setting 20% cross-shard trans-
actions is enough to prove that SHAFT can deal with intra- &
cross-shard transactions. The percentage only affects performance.
We choose the percentage based on a general understanding of the
cloud transaction pattern and the 20/80 rule. The number of shard-
s accessed by a transaction is randomly chosen from less than 10.
The number of operations in a transaction is randomly chosen from
less than 50, but which is no smaller than the number of shards.
To generate read-only transactions, we set 80% operations of all
transactions to be reads and the others writes; but for a single trans-
action, the percentage can be different. Each operation processing,
e.g. read or write, takes as long as sending an intra-datacenter mes-
sage.

We carry out three groups of experiments. We will further ex-
plain the detailed configurations of each experiment. The metrics
that we focus on are mainly the throughput rate in percentage and
the response time in virtual time units.

5.2 Workload Influence

To study the concurrency allowed by SHAFT, we test SHAFT
and MDCC under different workloads. We set the workloads to be
1 unit to 100 units of workloads. One workload unit is one transac-
tion per hundred units of virtual clock time, and 100 workload units
means one transaction per unit of virtual clock time. We randomly
choose among all nodes to initiate a transaction.

According to the protocols of SHAFT and MDCC, the two pro-
tocols should have similar performance when the workload is low.
As the workload increases, SHAFT can outperform MDCC. The
reason is that SHAFT is a pessimistic concurrency control proto-
col and MDCC is an optimistic. High concurrency can lead to

A
on
o

x
2
%

n Time Units
%8
0

Y

)
2 ‘% %

2 ‘o, %, %
> % % % % %

I - I - I - I - Y -+ &+
o, W, 0, %, 4%
00'7&} OO'Y‘} OO%‘} Ooﬁ’x} OO'Y(% (@
1 2 5 10 20 50
Units of Workloads

Response Times i

HT
|

g -+

W,
oy, R,
100

Figure 4: Response times as workloads increase. 75% trans-
action response times of SHAFT are comparable to those of
MDCC, although SHAFT has a longer tail in response times.

high abort rates of transactions using MDCC. On the other hand,
the throughput of read-only transactions will keep at a high level
using MDCC, although the read-only transactions can return val-
ues belong to different versions. As SHAFT guarantees serializ-
ability, read-only transactions always return consistent values. The
throughput of read-only transactions will drop as the workload in-
creases using SHAFT.

Figure 3 shows the throughputs of all committed transactions
and committed write transactions for SHAFT and MDCC as the
workloads increase. The throughputs of both SHAFT and MDCC
drop as workloads increase. MDCC'’s throughputs of committed
write transactions drop fiercely as workloads increase. The reason
is due to concurrent data access by transactions with intersecting
data sets. More and more write transactions are aborted as work-
loads increase when using MDCC. SHAFT outperforms MDCC in
throughputs of both committed transactions and committed write
transactions, as workloads increase. Since MDCC guarantees only
a low isolation level for read-only transactions, the throughput of
committed read-only transactions is not influenced by the increas-
ing workloads in MDCC. SHAFT guarantees serializability for all

Y/
on
o

9
%

n Time Units
‘s
x

p/
@
2

Y/
2
2,
2 %

7
PR
% %

Response Times i

0

7

Units of Workloads

Figure 5: Response times of write transactions as workloads in-
crease. The actual processing times of committed write trans-
actions using SHAFT (SHAFT-APT) is very close to those of
MDCC. The long tail of response times when using SHAFT is
due to the waiting of locks.

2 100

o SHAFT-all EX1
% 90 HAFT-write

3 MDCC-all ==
§ 80 MDCC-Write £
=

_'g 70

E

g 60

o

O 50

k3

g 40

s

S 30

e

2 20

QuorumInOneDc DHT 3DcWholeRep 5DcWholeRep ZipfianAccess
Data Distribution and Access Patterns

Figure 6: The percentage of committed transactions on differ-
ent data distribution and access patterns. (a) SHAFT outper-
forms MDCC in throughput in all scenarios except for Zipfi-
anAccess; (b) SHAFT has a higher throughput of committed
write transactions (SHAFT-wrtie vs. MDCC-write) under Zip-
fianAccess; (c) Whether a quorum of replicas are placed in
the same datacenter, whether datacenters have complete copies
of data, and the number of replicas when datacenters have
complete data copies do not have impact on the throughput of
SHAFT, but MDCC has higher throughputs of committed write
transactions when datacenters have complete data copies.

transactions, thus its throughput of committed read-only transac-
tions is affected by the increasing workloads.

Figure 4 shows the boxplots of the responses times of committed
transactions for SHAFT and MDCC. A boxplot illustrates the min,
the 25%, the median, the 75%, and the max response times in an
experiment. 75% transaction response times of SHAFT are compa-
rable to those of MDCC, although SHAFT has a longer tail in re-
sponse times. However, taking a closer look and observing Figure
5, we can see that the actual processing times of committed write
transactions using SHAFT (SHAFT-APT) is very close to those of
MDCC. The long tail of response times when using SHAFT is due
to the waiting of locks.

5.3 Data Distribution and Access Patterns

In actual deployments, data can be distributed to datacenters ac-
cording to the application patterns. In the following, we study how
data distribution and access patterns can influence the throughputs
and response times of transactions. We apply 20 units of work-
loads in all scenarios for this subsection. We study five scenarios
including placing a quorum of replicas in one datacenter (Quoruml-
nOneDc), uniformly distributing data to nodes accross datacenters
(DHT), placing a complete copy of data in each of the three data-
centers (3DcWholeRep), placing a complete copy of data in each of
the five datacenters (SDcWholeRep), and accessing data following
Zipfian distribution under QuorumInOneDc condition (ZipfianAc-
cess).

Figure 6 shows the throughputs of transactions on different data
distribution and access patterns. We can easily observe that SHAFT
outperforms MDCC in throughput in all scenarios except for Zip-
fianAccess. Under the Zipfian access pattern, SHAFT has a higher
throughput of committed write transactions than MDCC. The rea-
son is that many concurrent transactions accessing intersecting data
sets have to be aborted in MDCC.

On the one hand, Zipfian access pattern greatly impacts the re-
sulting throughput and concurrency. On the other hand, whether a
quorum of replicas are placed in the same datacenter, whether dat-
acenters have complete copies of data, and the number of replicas
when datacenters have complete data copies do not have impact on

7
on
o9

2
%

x

in Time Units
s
(7))
%

y/
2,

(4

P’
7, ‘0

2, ‘0, %

% % %
i
o

Response Times i

o

7

2 ° 220 % 2,

N R N R N I AN S AN
2 o 2 o 2 o) = % “
. © “ © S _© ©)

QuorumInOneDc DHT 3DcWholeRep SDcWhnlelgep ZipfianAc(zess
Data Distribution and Access Patterns

Figure 7: Response times on different data distribution and ac-
cess patterns. (a) Write transactions take longer time to re-
sponse than read-only transactions (-All vs. -Write); (b) Zipfian
access pattern (ZipfianAccess) has a great impact on response
times of SHAFT; (¢) Whether a quorum of replicas is in one
datacenter (QuorumInOneDc vs. DHT) does not lead to obvi-
ous differences in response times; (d) Complete copies in dat-
acenters (3DcWholeRep & 5DcWholeRep) lead to monotonous
response times; (e) Cross-datacenter communication latency
has greater impacts on response times than the number of
copies, when placing complete copies in datacenters (3DcW-
holeRep vs. 5DcWholeRep).

the throughput of SHAFT, but MDCC has higher throughputs of
committed write transactions when datacenters have complete data
copies. The reason for MDCC'’s higher throughputs on complete
data copies in datacenters is smaller abort rates and fewer compet-
ing transactions. This can be related to the workload generator of
the simulations. In such scenarios, the workload generator tends to
generate fewer transactions with intersecting data sets.

Figure 7 demonstrates the transaction response times on differ-
ent data distribution and access patterns. We can easily observer
that write transactions take longer time to response than read-only
transactions. While Zipfian access pattern has greater impact on
MDCC'’s throughput of committed write transactions, it has a great
impact on response times of SHAFT. Whether a quorum of replicas
is in one datacenter does not lead to obvious differences in response
times, but complete copies in datacenters lead to a different distri-
bution of response times. In fact, complete copies in datacenters
lead to monotonous response times. Observing closely, we can see
that cross-datacenter communication latency has greater impacts on
response times than the number of copies, when placing complete
copies in datacenters.

5.4 Fault Tolerance

In the case with failures, we find out how failures can affect the
throughput and response times. We apply 10 units of workload-
s. Two kinds of failures are considered, i.e. datacenter blackout
and failed nodes, but we will guarantee that no more than F among
2F+1 replicas failed simultaneous. When [unit of failure is ap-
plied, some nodes randomly fail. With 10 units of failures, a w-
hole datacenter of nodes fail simultaneously. Here, 1 unit of failure
means that there is a failed node every hundred thousand units of
virtual clock time. Though the units of failures are different, al-
1 failable nodes will fail before every experiment ends, i.e. only
a necessary quorum of replicas are left. The quorum is computed
based on the tolerable failures of Paxos algorithm.

(7]

c

o SHAFT-all EX1 MDCC-all EX1

© 1 SHAFT-write MDCC-Write 1

1 v

] % B

€ o0s5f K Kl

8 S B o - -

T QSIS IS ~

2 & &

L K o

£ o1}

E o005 Kl Kl

3 8 s

S o K

o 001 KXl K]

] o o

c K K

[% B 4

o o o]

2 o o I

) K Kl d J

o 0002, 3D, SD, Q 3D, D,
u . . u . X
“"UmanneDLCWholeRep LVVhoh:Rep "r”mInOneDLCWholeRep C"VholeRep

10 units of failures 1 unit of failure

Figure 8: The percentage of committed transactions on fail-
ures. Failures have little influence on the throughputs of
SHAFT, but have great impacts on MDCC’s throughput of
committed write transactions.

Figure 8 shows the throughputs of committed transactions on
failures. The y axis of Figure 8 is in log scale and the values are
multiplied by 500 before applying logarithm. Observing the result,
we can see that failures have little influence on the throughputs of
SHAFT, but have great impacts on MDCC’s throughput of com-
mitted write transactions. When failures happen, SHAFT exhibits
a higher concurrency level than MDCC. When the application serv-
er of MDCC fails, no other nodes can take up the job and push the
transaction to finish, thus leaving the transaction in the blocking
state. In comparison, SHAFT permits failures of any role and con-
tinues to work as long as no more than tolerable number of accep-
tor/learner failures happen.

Figure 9 shows the transaction response times on failures. Com-
paring to the response times on 10 workload units in Figure 3,
SHAFT’s range of response times widens on failure conditions,
while MDCC’s remain stable. The reason is that the unsuccessful
transactions are aborted or remain blocked in MDCC. On failures,
both the number of retried transactions and the number of lock-
waiting transactions increase in SHAFT, thus leading to a wider
range of response times. The more failures, the wider the range.
Note that, when each datacenter has a complete copy of data, the

S,
%,
%2

Response Times in Time Unit

QuorumInOnep, 3P¢WholeRep SPWholeRep QuorumInOnen3P¢WholeRep SP¢WholeRep
10 units of failures 1 unit of failure

Figure 9: Response times on failures. The response times of

SHAFT increase on failures as compared to the normal case,

while the response times of MDCC’s committed transactions

remain stable.

number of copies does not have much influence on transaction through-

put and response times, even on failures.
5.5 Application Indications for SHAFT

First, restart transactions only when the load is certain to be very
low. SHAFT has the mechanism to automatically restart a transac-
tion that fails to lock the necessary data shards. This mechanism
should be used carefully. In our experiments, restart does not lead
to improved throughputs. In fact, restarted transactions can exacer-
bate the contention of locks, the bandwidth consumption, and the
processing workloads. The throughput might thus be reduced and
the response latency is prolonged. If the transaction workload is in-
evitably high, we can reduce the transaction consistency level such
that transactions are processed without serializability guarantees.
We have succeeded in finding a new series of consistency levels
suitable for transactions with fault-tolerance and high availability
demands. We leave the report of this result to a future paper.

Second, do not use transactions extensively in distributed envi-
ronments. As transaction workloads increase, the percentage of
committed transactions will be reduced and the response times are
prolonged. Whenever possible, a lower consistency level should
be considered for applications. In SHAFT, we treat all operations
on replicated data as transactions. Though strong consistency level
is provided, the performance is harmed. If all reads are processed
in non-transactional semantics, as in MDCC, the contention can be
reduced and the performance improved.

Third, consider the data access pattern of applications and scatter
hot data to different nodes, when partitioning and distributing data
in the system. As reflected by the experiments, the concentrated
access of data, e.g. Zipfian access pattern, has a great impact on
the performance of transaction processing. Furthermore, complete
copies in all datacenters will lead to monotonous response times.
This fact can be exploited whenever necessary. Putting a majority
of replicas in a datacenter closest to clients can improve perfor-
mance only if the timeout is set to an appropriate value, the setting
of which might need actual engineering experiences.

Finally, failures can have occurred if the distribution of transac-
tion response times moves up to larger values and the workload has
been kept stable. Although such failures do not affect the transac-
tion processing of SHAFT as long as the failure number is under
a certain level, removing failures from the system can improve the
performance of transaction processing.

6. RELATED WORK

Transaction proposals for the cloud can be divided into three cat-
egories. The first category considers data partition but no replica-
tion, e.g., G-store [18]. It provides on-demand transactional ac-
cess over partitioned data through group communication protocol.
However, replication is left to the underlying storage’s considera-
tion, i.e., not considered.

The second category considers a whole replication of database,
but no partition, e.g., Walter [34]. It supports parallel snapshot
isolation (PSI), which precludes write-write conflicts of concurren-
t transactions by timestamps at different sites, each of which is a
complete copy of the whole database. Time coordination is known
to be a imprecise between sites, thus remains a problem to the P-
SI implementation. Megastore [10] only provides serial transac-
tion support within each entity group. It exploits Paxos protocol
for fault-tolerance. A leader is selected among a group of replicas
for high availability, such that the system can recover automati-
cally from leader failures. Paxos-CP [31] is another improvement
of Megastore. Serializable schedules of transactions are supported
through combination and promotion enhancements. But it mainly

deals with transactions across datacenters, assuming one complete
replica and one transaction service per datacenter.

The third category considers both replication and partition. S-
panner [17] extends Megastore. While two phase locking and Pax-
os protocol are exploited within a shard and their replicas, a global
transaction commit layer with True Time support guarantees the s-
napshot isolation of transactions, as well as external consistency.
Calvin [36] implements a middle layer for replication and trans-
action scheduling functions. Its transaction scheduling is serializ-
able and deterministic over strongly consistent replicas. Distributed
transactions are composed of local transactions. Locking is exploit-
ed. Eiger [28] enables causal consistency by adding dependency
metadata to each write. These dependencies are checked before ap-
plying any write. Unsatisfying a dependency check causes a write
to block till all writes it depending on have been applied. Based
on the causal replica consistency, non-blocking algorithms for both
read-only and write-only transactions are proposed. These algo-
rithms are variant of the Paxos algorithm.

MDCC [22] is the closest counterpart of SHAFT. It supports the
isolation level of read-committed without lost updates. MDCC is
based on the Paxos algorithm. Multiple individual Paxos instances
are involved in each cross-shard transaction. The transaction ini-
tiator collects results from each Paxos instance to decide the final
commit/abort decision for the transaction. Note that, MDCC does
not allow the transaction to be aborted actively once started, unless
some Paxos instance votes to abort. In MDCC, the abort of a trans-
action means all processing work of the transaction is wasted. On
a restart, the transaction must read again all data. If the consistent
reads are required, the abort rates of MDCC become stunning.

Replicated commit [29] is the most recent related work on cloud
transactions. It separates replication from distributed transaction
commit support. It layers the replication layer over the transaction
commit layer. Although the involved cross-datacenter communica-
tions are reduced, the possibility of different transaction decisions
by different datacenters for the same transaction is high such that
there can be a low throughput problem.

There is also a recent work [9] on providing stronger consistency
by implementing a middle layer over eventually consistent datas-
tores such that availability and relatively stronger consistency are
simultaneously guaranteed. However, transaction-level consisten-
cy is not provided. In comparison, SHAFT can guarantee serializ-
ability consistency for transactions even on failures, as long as the
number of failures is smaller than the tolerable failures of Paxos al-
gorithm. Different from other Paxos-based protocols that are only
for atomic commitment, SHAFT is a complete concurrency control
protocol in distributed environment.

7. CONCLUSION AND FUTURE WORK

Targeting at providing serializable transaction processing over
partitioned, distributed and replicated data, we propose in the pa-
per SHAFT, a Paxos-based pessimistic concurrency control pro-
tocol. SHAFT has a distributed strict two-phase locking proce-
dure. Thus, SHAFT guarantees serializability, high availability and
fault tolerance simultaneously. Different from other synchronous
transactional replication protocol, SHAFT allows clients to actively
abort a transaction. In comparison to other Paxos-based proposals,
the key techniques that SHAFT exploits are the different incarna-
tion and the updated operation semantics of the Paxos algorithm.
As SHAFT mainly guarantees strong transaction consistency lev-
el, users can sought for other existing methods to provide weaker
consistency degrees or isolation levels when such is needed. How-
ever, SHAFT is as non-blocking a protocol as others guaranteeing
weaker consistency levels.

We also propose a simulation-based evaluation framework. Our
usage of a comprehensive simulator in our evaluation with SHAFT
guarantees a fair comparison towards other counterparts. The frame-
work exempts protocol developers from engineering details but fo-
cusing on the key features. Implementations under the framework
can also help to guide the real implementation of the protocols.
Furthermore, the analysis can guide applications in their choices of
protocols. Experiments under the framework show that, while guar-
anteeing the strongest consistency level, SHAFT has a comparable
performance to the recent related work MDCC, which outperforms
other synchronous transactional replication protocols, e.g. Megas-
tore.

The transaction processing procedure of SHAFT integrates repli-
cation with concurrency control. It treats each operation over repli-
cated data as a transaction. Such integration makes a complete
alignment of consistency levels possible. We are expecting that
SHAFT, together with the related work mentioned in the paper,
will stimulate new definitions of transaction consistency levels to
emerge in the near future.

8[‘1] &gaanz}{ v%lls\sligﬁ§p://Cassandra.apache.org/.

[2] Hbase website. http://hbase.apache.org/.

[3] Mongodb website. http://www.mongodb.org/.

[4] Lightning causes amazon, microsoft cloud outages in europe,
August 2011.
http://www.crn.com/news/cloud/231300384/lightning-
causes-amazon-microsoft-cloud-outages-in-europe.htm.

[5] Reddit, quora, foursquare, hootsuite go down due to amazon
ec2 cloud service troubles, April 2011.
http://www.huffingtonpost.com/2011/04/21/amazon-ec2-
takes-down-reddit-quora-foursquare-hootsuite_n_

851964 .html.

[6] Amazon cloud goes down friday night, taking netflix,

instagram and pinterest with it, October 2012.

http://www.forbes.com/sites/anthonykosner/2012/06/30/amazon-

cloud-goes-down-friday-night-taking-netflix-instagram-and-
pinterest-with-it/.

[7]1 M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Stable leader election. In Distributed Computing,
pages 108-122. Springer, 2001.

[8] P. Bailis and A. Ghodsi. Eventual consistency today:
limitations, extensions, and beyond. Commun. ACM,
56(5):55-63, May 2013.

[9] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on
causal consistency. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data,
SIGMOD 13, pages 761-772. ACM, 2013.

[10] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,

J. Larson, J.-M. Léon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage for
interactive services. In Proc. of CIDR, pages 223-234, 2011.

[11] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ansi sql isolation levels. ACM
SIGMOD Record, 24(2):1-10, 1995.

[12] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems,
volume 370. Addison-wesley New York, 1987.

[13] W.J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters,
and P. Li. Paxos replicated state machines as the basis of a
high-performance data store. In Proceedings of the 8th
USENIX conference on Networked systems design and
implementation, pages 11-11. USENIX Association, 2011.

[14] E. A. Brewer. Towards robust distributed systems (abstract).
In Proceedings of the nineteenth annual ACM symposium on
Principles of distributed computing, PODC *00, pages 7—.
ACM, 2000.

[15] M. Burrows. The chubby lock service for loosely-coupled

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]
[36]

distributed systems. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages

335-350. USENIX Association, 2006.

T. Chandra, R. Griesemer, and J. Redstone. Paxos made
live-an engineering perspective (2006 invited talk). In
Proceedings of the 26th ACM Symposium on Principles of
Distributed Computing-PODC, volume 7, 2007.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,

J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,

P. Hochschild, et al. Spanner: Google’s globally-distributed
database. Proceedings of OSDI, page 1, 2012.

S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable
data store for transactional multi key access in the cloud. In
Proceedings of ACM SoCC, pages 163—174. ACM, 2010.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM (JACM), 32(2):374-382, 1985.

J. Gray and L. Lamport. Consensus on transaction commit.
ACM Trans. Database Syst., 31(1):133-160, Mar. 2006.

S. Kadambi, J. Chen, B. Cooper, D. Lomax,

R. Ramakrishnan, A. Silberstein, E. Tam, and

H. Garcia-Molina. Where in the world is my data.
Proceedings of the VLDB Endowment, 4(11), 2011.

T. Kraska, G. Pang, M. J. Franklin, and S. Madden. Mdcc:
Multi-data center consistency. In Eurosys, 2013.

L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM,
21(7):558-565, 1978.

L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133-169, 1998.

L. Lamport. Fast paxos. Distributed Computing,
19(2):79-103, 2006.

L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos and
primary-backup replication. In Proceedings of the 28th ACM
symposium on Principles of distributed computing, pages
312-313. ACM, 2009.

L. Lamport and M. Massa. Cheap paxos. In Dependable
Systems and Networks, 2004 International Conference on,
pages 307-314. IEEE, 2004.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency geo-replicated
storage. In Proceedings of USENIX NSDI, nsdi’ 13, pages
313-328, 2013.

H. A. Mahmoud, A. Pucher, F. Nawab, D. Agrawal, and

A. E. Abbadi. Low latency multi-datacenter databases using
replicated commits. In Proceedings of the VLDB
Endowment, 2013.

A. Montresor and M. Jelasity. PeerSim: A scalable P2P
simulator. In Proc. of the 9th Int. Conference on Peer-to-Peer
(P2P’09), pages 99-100, Seattle, WA, sep 2009.

S. Patterson, A. J. Elmore, F. Nawab, D. Agrawal, and

A. El Abbadi. Serializability, not serial: Concurrency control
and availability in multi-datacenter datastores. Proceedings
of the VLDB Endowment, 5(11):1459-1470, 2012.

D. R. Ports and K. Grittner. Serializable snapshot isolation in
postgresql. Proceedings of the VLDB Endowment,
5(12):1850-1861, 2012.

Y. Raz. The principle of commitment ordering, or
guaranteeing serializability in a heterogeneous environment
of multiple autonomous resource mangers using atomic
commitment. In Proceedings of the VLDB Endowment,
pages 292-312, 1992.

Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Proceedings of ACM
SOSP, pages 385-400, 2011.

M. Tamer ¢Ozsu and P. Valduriez. Principles of distributed
database systems. Springer, 2011.

A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi. Calvin: fast distributed transactions for
partitioned database systems. In Proceedings of ACM
SIGMOD, pages 1-12, 2012.

	shaft.pdf
	Introduction
	Preliminary
	Basic Paxos Algorithm
	Overview and Key Concepts
	Basic Procedure

	Data Model and Infrastructure

	The SHAFT Protocol
	The Processing Instance
	The Decision Instance
	Lock Acquisition Failure and Restart
	Fault Tolerance and Protocol Correctness
	The Proof of Serializability � DS2PL
	SHAFT Pseudocode

	Improvements
	Read-Only Transactions - Availability
	Merge of Instances
	Data Granularity and Distribution

	Evaluation
	The Simulation Settings
	Workload Influence
	Data Distribution and Access Patterns
	Fault Tolerance
	Application Indications for SHAFT

	Related Work
	Conclusion and Future Work
	References

