
ar
X

iv
:1

70
8.

01
34

9v
2

 [
cs

.D
C

]
 7

 A
ug

 2
01

7

ACTS in Need: Automatic Configuration Tuning
with Scalability Guarantees∗

Yuqing Zhu, Jianxun Liu, Mengying Guo, Wenlong Ma, Yungang Bao
Advanced Computer Systems Research Center

Institute of Computing Technology, Chinese Academy of Sciences

Beijing, China

zhuyuqing,liujianxun,guomengying,mawenlong,baoyungang@ict.ac.cn

ABSTRACT

To support the variety of Big Data use cases, many Big Data re-

lated systems expose a large number of user-specifiable configura-

tion parameters. Highlighted in our experiments, a MySQL deploy-

ment with well-tuned configuration parameters achieves a peak

throughput as 12 timesmuch as onewith the default setting. How-

ever, finding the best setting for the tens or hundreds of configu-

ration parameters is mission impossible for ordinary users. Worse

still, many Big Data applications require the support of multiple

systems co-deployed in the same cluster. As these co-deployed

systems can interact to affect the overall performance, they must

be tuned together. Automatic configuration tuning with scalabi-

lity guarantees (ACTS) is in need to help system users. Solutions

to ACTS must scale to various systems, workloads, deployments,

parameters and resource limits. Proposing and implementing an

ACTS solution, we demonstrate that ACTS can benefit users not

only in improving system performance and resource utilization,

but also in saving costs and enabling fairer benchmarking.

ACM Reference format:

Yuqing Zhu, Jianxun Liu, Mengying Guo, Wenlong Ma, Yungang Bao. 2017.

ACTS in Need: Automatic Configuration Tuning with Scalability Guar-

antees. In Proceedings of APSys ’17, Mumbai, India, September 2-3, 2017,

8 pages.

https://doi.org/10.1145/3124680.3124730

1 INTRODUCTION

The BigData industry is estimated to beworthmore than hundreds

of billions of dollars and still growing [5, 32]. Along with the Big

Data phenomenon, many systems emerge to fulfill the tasks of

collecting, processing and analyzing the huge amount of data, e.g.,

Hadoop [2] and Spark [3]. To support the variety of Big Data use

cases, many Big Data related systems are designed and developed

with a large number configuration parameters (or knobs) [45]. For

example, Hadoop [2] has more than 180 knobs, while the database

∗Yuqing Zhu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

APSys ’17, September 2-3, 2017, Mumbai, India

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.
ACM ISBN 978-1-4503-5197-3/17/09. . . $15.00
https://doi.org/10.1145/3124680.3124730

system MySQL [7] has more than 450 knobs. These tunable confi-

guration parameters control nearly all aspects of system runtime

behaviors [21].

On the one hand, these configuration parameters are highly

correlated with the system performance [1, 11, 12]. Take MySQL

for instance. Changing the configuration setting can result in more

than 11 times performance gain for MySQL (§5.1). On the other

hand, the large number of configuration parameters lead to an ever-

increasing complexity of configuration issues that overwhelm users,

developers and administrators. Asmultiple systems can be involved

in a task of Big Data management, tuning multiple systems’ con-

figuration parameters that intrinsically interact in an application

has surpassed the abilities of humans [17].

Automatic configuration tuning (ACT) can help users tune the

large number of configuration parameters towards a better overall

performance. ACT involves solving the performance optimization

problem in the high-dimensional space of configuration parame-

ters. Previous attempts to automate configuration tuning have

used search-based [44, 46],model-based [21, 31] or control-based [19,

40] methods. Some of these methods assumemanually constructed

models [31] or the existence of system simulators [26, 29, 46].

These assumptions are feasible for a specific system with a lim-

ited number of parameters [19, 48]. Some methods assume the

existence of a large sample set [18]. Many have not considered

the influence of workloads on tuning [42], and hardly any related

work considers the deployment environment as a factor that affects

configuration tuning.

Now, the problem of automatic configuration tuning is facing

three new challenges not studied before (§2). These challenges

come from the large number of configuration parameters, the dy-

namicity and complexity of the performancemodel, and the expen-

sive sample collection process. The unprecedentedly large number

of configuration parameters have complicated the performance

model of a system. Worse still, the complex performance model

is also related to factors like workloads and deployment environ-

ments; hence, a system must be tuned in a deployment environ-

ment similar or the same as the real system deployment. This fact

makes the collection of samples very expensive.

Automatic configuration tuningwith scalability guarantees (ACTS)

is in need to address these challenges. In this work, we motivate

the study of the ACTS problem: automatically tuning the system

configuration parameters while addressing the above challenges

by guaranteeing five scalability requirements (§3). The five scala-

bility requirements involve the scalability regarding SUT (system

under tune), workload, deployment environment, parameter set,

and sample set size.

http://arxiv.org/abs/1708.01349v2
https://doi.org/10.1145/3124680.3124730
https://doi.org/10.1145/3124680.3124730

APSys ’17, September 2-3, 2017, Mumbai, India Yuqing Zhu, Jianxun Liu, Mengying Guo, Wenlong Ma, Yungang Bao

(a) MySQL: uniform read (b) Tomcat: default JVM settings (c) Spark: standalone

(d) MySQL: zipfian read-write (e) Tomcat: tuned JVM settings (f) Spark: cluster

Figure 1: Diverging performance surfaces of MySQL, Tomcat and Spark under different workloads and deployments.

Despite the difficulty of the ACTS problem, we propose a pre-

liminarily feasible solution (§4). This solution has a flexible system

architecture different from previously proposed architectures. This

flexible architecture can adapt to different SUTs, workloads and

deployment environments. It also allows the easy integration of

scalable sampling methods and scalable optimization algorithms

to solve the ACTS problem. We have implemented the solution to

demonstrate the benefits of ACTS.

Solving the ACTS problem can lead to great benefits for users

(§5), including but not limited to facilitating the system usage, im-

proving the system performance, increasing the system utilization,

saving labor costs, fairer benchmarking results, identifying system

bottlenecks, etc. As only sporadic efforts are found to study the

problem of automatic configuration tuning, our goal here is mainly

to motivate the study of the ACTS problem, as well as demonstrat-

ing the feasibility and the great benefits of solving ACTS.

2 NEW CHALLENGES OF ACT

The problem of automatic configuration tuning (ACT) is becoming

more challenging. On the one hand, ACT involves an optimization

problem which is previously known to be difficult to solve. On the

other hand, new challenges are emerging, thanks to Big Data.

2.1 A Large Number of Knobs

The number of configuration parameters is now tens, hun-

dreds or more. Previously, the number of variables is multiple

in the optimization problem of configuration tuning [26, 29, 46].

As Big Data systems are targeting a wide range of use cases, they

can provide tens or hundreds of configuration parameters [45] for

users in various use cases and with various deployment environ-

ments. Moreover, co-deployed systems might need to be tuned

together for one use case such that the number of parameters

to tune can further increase. For example, the tuning guides for

Hadoop suggest tuning the configuration parameters of both the

Hadoop (with more than a hundred knobs) and the JVM (Java Vir-

tual Machine, with tens of knobs) [14, 28]. Thus, the performance

optimization problem of configuration tuning must be solved in

a high-dimensional space that rarely occurs in previous optimiza-

tion problems’ settings.

The number of parameters can hardly be reduced in con-

figuration tuning. The impacts of configuration parameters on

a system’s performance are intrinsic and complicated. Sometimes,

a configuration parameter can have impacts unfound even by sys-

tem developers [21]. Besides, configuration parameters are non-

stochastic variables. Hence, the dimension reductionmethods com-

monly used in machine learning cannot be applied to reduce the

number of configuration parameters, e.g., factor analysis [6] or

principal component analysis [8]. Even though themore impacting

knobs can be tuned first [42], the less impacting knobs cannot be

neglected in tuning, because it is likely that the combined impact

of all the less impacting knobs exceeds that of the more impacting

knobs.

2.2 Dynamicity and Complexity

We have carried out thousands of experiments to study the

dynamicity and complexity of performance models. The perfor-

mance model of an SUT is highly dynamic and complex, because

it is related to not only the SUTs, but also the varying workloads

and deployment environments. The impacts of the deployment en-

vironment can come from the hardware and the software [16, 47].

Such impacts make it infeasible to decompose the SUT and the

deployment environment into subcomponents for tuning. These

facts also make it very difficult for human beings to manually

construct models or simulators for general systems.

ACTS in Need: Automatic Configuration Tuning

with Scalability Guarantees APSys ’17, September 2-3, 2017, Mumbai, India

Different SUTs have different performance models. Take

the widely used database system MySQL [7], Web server system

Tomcat [4] and big data processing system Spark [3] for example.

We plot in Figure 1(a), 1(b) and 1(c) their performance functions

projected in low-dimensional spaces respectively. For MySQL, the

projection is two lines, while Tomcat’s is a irregularly bumpy sur-

face. Spark’s is a relatively smooth surface, which can be depicted

as smooth lines when projected to a 2-D space.

Different workloads also lead to different performance

models. For the same deployment of MySQL, we apply the differ-

ent workloads of uniform read and zipfian read-write. The differed

workloads result in the diverging plots in Figure 1(a) and 1(d). For

the uniform read workload, the query_cache_type is the configu-

ration parameter dominating the system performance. But for the

zipfian read-write workload, the value of query_cache_type has no

such dominant influence. The impacts of configuration parameters

are workload related.

The hardware of the deployment environment influences

the performance model. A system can be deployed on a single

server or a server cluster. The system deployed on a single server

generally behaves differently from that deployed in a cluster. To

demonstrate the hardware impact from the deployment environ-

ment, we deploy Spark in the standalone mode and the cluster

mode. Applying the same workload, we get two differed perfor-

mance functions as plotted in Figure 1(c) and 1(f). As compared to

the smooth performance function of the standalone mode, that of

the cluster mode rises up sharply at some points, e.g., when the

value of executor.cores equals to four.

The co-deployed software also has intrinsic impacts on

the SUT’s performance. For Big Data applications, multiple sys-

tems might need to be deployed together to accomplish one task.

For example, we might need to deploy the Hadoop file system

for using Spark; and, running Java-based systems requires the

running of JVM (Java Virtual Machine). Co-deployed software

systems can interact with and influence each other, as they might

share hardware resources like CPU cycles, memory and network

bandwidth. For instance, Figure 1(e) differs from Figure 1(b) only

in that we change the JVM setting TargetSurvivorRatio when gen-

erating Figure 1(e). Although the performance surface remains as

bumpy, the maximum performance is achieved at different areas.

2.3 Costly Sample Collection

Only a limited number of samples can be collected for tun-

ing. Because of the impacts from the deployment environment and

the workload, the performance-configuration samples can only be

generated in tests that apply the workload on the deployed system.

Thus, collecting a large set of tuning samples is too expensive to

be practical. As performance models or simulators can hardly be

constructed due to complexity, no arbitrary number of samples can

be generated for configuration tuning. It is not practical at all to

collect thousands of samples as required by existing solutions to

configuration tuning [29]. Rather, users might expect a solution

exploiting only hundreds or tens of samples, considering that Big

Data workloads generally take time to run [24, 27]. In sum, confi-

guration tuning must restrain the overhead of sample collection.

3 THE NEW PROBLEM: ACTS

The new challenges in fact call for solutions to a new problem.

The new problem is the problem of automatic configuration tuning

with scalability guarantees (ACTS). The ACTS problem is to find,

within a given resource limit, a configuration setting that can

optimize the performance of a given SUT’s deployment under a

specific workload.

Resource limit can be represented as the time or the number of

tests allowed for tuning. Different measures for resource can be

transformed into and represented by each other. For convenience,

we consider in this paper the resource limit as the number of

allowed tests, which is equal to the number of samples to be

collected.

The solution to the ACTS problem must guarantee scalability

with regard to resource limit, configuration parameter set,

SUT, deployment environment and workload. When the re-

source limit is relaxed, the solution to ACTS is expected to output a

configuration setting with a better performance. The solutionmust

also be able to find new best configuration settings when new con-

figuration parameter sets, SUTs, deployment environments and

workloads are provided. It must adapt to the changes of these

factors. Besides, the integration of evolved SUTs, deployment en-

vironments and workloads must be facilitated.

The problem of ACTS and the scalability requirements invali-

date the assumptions of related works on automatic configuration

tuning. First, preconstructing models or simulators [31] has sur-

passed the capabilities of humans due to the large number of con-

figuration parameters in the overall system, as well as due to the

complicated interactions between the SUT, the workload and the

deployment environment. Second, the sample collection becomes

very expensive as the tuning samples can only be collected for

a specific deployment of system, instead of being reused across

deployments [42]. The costs of sample collection must be taken

into account in configuration tuning, rather than assuming a large

sample set [29]. Third, assuming strong conditions for tuning is

impractical as the performance model of an SUT is correlated with

the varying workloads, hardware settings, co-deployed software,

and the set of configuration parameters.

4 A PRELIMINARY ACTS SOLUTION

Although the ACTS problem is difficult, we demonstrate that it is

solvable by presenting a preliminary ACTS solution in this section.

4.1 Design Rationale

To solve the ACTS problem, we must allow the tuning system to

collect samples directly from the SUT in the target deployment

environment and under the real workload. The sample collection

process requires changing the configuration settings of the SUT,

which must be restarted to allow the new configuration setting to

take effect. Therefore, the tuning systemmust be able to control the

SUT and run the workload. To fulfill this purpose, we design the

architecture of the tuning system with the components of system

manipulator and workload generator. To avoid the interference

with the real applications on tuning, the design of this architecture

takes advantage of the staging environment that commonly exists

APSys ’17, September 2-3, 2017, Mumbai, India Yuqing Zhu, Jianxun Liu, Mengying Guo, Wenlong Ma, Yungang Bao

and that is the same as the actual deployment environment. The

resulting architecture is plotted in Figure 2. Section 4.2 presents

a brief overview of the architecture and the interactions between

system components.

While the problem about how to collect samples with scalability

guarantees is solved by the flexible architecture, the problem about

which samples to collect remains to be addressed. Due to the

large number of configuration parameters and their wide ranges,

it is impossible to try every possible combinations. In fact, only a

very limited number of configuration settings can be tested and

sampled, because of the resource limit in the ACTS problem. Here,

there exists a subproblem of sampling.

The subproblem of sampling must handle all types of parame-

ters, including boolean, enumeration and numerics. The resulted

samples must have a wide coverage of the solution space. To guar-

antee scalability, the sampling method must also guarantee better

coverage of the whole solution space if more samples are allowed

by the users. Thus, the sampling method must produce sample

sets satisfying the following three conditions: (1) the set has a

wide coverage over the high-dimensional space of configuration

parameters; (2) the set is small enough to meet the resource limit

and reduce test costs; and, (3) the set can be scaled to have a

wider coverage, if the resource limit is expanded. We propose to

use the LHS (Latin Hypercube Sampling) [36] method to solve the

sampling subproblem, as it meets all the three conditions (detailed

in §4.3).

There also exists the second subproblem, which is to maximize

the performance metric based on the given number of samples. It

is required that the output configuration setting must improve the

system performance than a given configuration setting, which can

be the default one or one manually tuned by users. To optimize

the output of a function/system, two general methods exist, i.e.,

model-based and search-based. Whichever method is used, the

optimization must satisfy the following conditions: (1) it can find

an answer even with a limited set of samples; (2) it can find a

better answer if a larger set of samples is provided; and, (3) it

will not be stuck in local sub-optimal areas and has the possibility

to find the global optimum, given enough resources. As model-

based methods generally require a large sample set, we consider

search-based methods. Thus, we propose to use, along with LHS,

the recursive random search (RRS) algorithm [46] that satisfies all

the three conditions (detailed in §4.3).

4.2 A Flexible Architecture

The flexible architecture is depicted in Figure 2. It mainly consists

of three components, i.e., a tuner, a system manipulator, and a

workload generator. Abiding by the ACTS problem definition, the

tuner accepts the resource limit (typically the number of allowed

tests) from the user. It extracts the configuration parameter set and

their ranges from the SUT. The tuner allows different sampling and

optimizationmethods to be used, because the SUT, the deployment

environment and the workload are decoupled from the tuning

process by the other two components. The workload generator

allows the easy integration of various workloads for tuning, thus

satisfying the workload scalability. The system manipulator can

Tuner/

Sampler/

Optimizer

Real

Systems

Parameters

Commands

Responses

System

Manipulator
Param

eters
Com

m
ands

Staging

Systems

Workloads

Commands

States

States

Workload

Generator

1

2

3

2

4

5

6

6

Assumptions

Tuning System

Boundary

Tuning System

Components

Figure 2: Architecture: automatic configuration tuning for

general systems. (Best view in color)

easily integrate with different SUTs in different deployment envi-

ronments.

ExistingACT solutions cannot solve theACTS problempartially

because their architecture designs are based on assumptions violat-

ing the scalability requirements. We can group the architectures

of ACT solutions into three categories, i.e., the simulation-based

architecture [29], the large-sample-set-based architecture [18] and

the deployment-irrelevant architecture [42] that reuses samples

collected from different system deployments. These architectures

are illustrated in Figure 3. Explained in Section 2, the new chal-

lenges invalidate the assumptions that underlie these architectures.

Compared to the architectures in Figure 3, three major differ-

ences exist for the flexible architecture. First, the SUT, workload

and deployment scalability is considered in the design of the work-

load generator and the system manipulator, with the tuner con-

trolling these two components. Second, the tuner has not reused

samples collected from other system deployments. As explained

in Section 2, performance models are deployment-related, thus

samples for other deployments cannot be reused.

Third, the tuning tests are run in a staging environment, in-

stead of real systems or simulators. The staging environment is

a mirror of the production environment, having the same actual

deployment settings (e.g. hardware, clustering, software, etc.) [33,

39, 41]. Using live data, it is mainly for a final test of the system

before production [23, 37]. And, implementing the real application

workload in the workload generator is possible for the system

in the staging environment, e.g., by log replay [20, 22, 34]. Our

architecture exploits the staging environment such that samples

can be collected without affecting applications on the real system

deployment.

4.3 Subproblem Solutions: LHS + RRS

Following the analysis for solving the two subproblems (§ 4.1), we

adopt the LHS (Latin Hypercube Sampling) [36] method and the

recursive random search (RRS) algorithm [46].

LHS is a classic method for experimental design. Assuming that

we need to collectm samples. LHS divides the range of each param-

eter intom intervals. It combines one interval of each parameter

to form a subspace, in which LHS randomly chooses a sample.

Repeating this process for m times, m samples get chosen. It is

required that every interval of each parameter is used exactly once

in the process.

LHS is a scalable sampling method. First, it has a wide coverage

over the high-dimensional space because it considers every inter-

val of each parameter. Second, it can sample by settingm equal to

ACTS in Need: Automatic Configuration Tuning

with Scalability Guarantees APSys ’17, September 2-3, 2017, Mumbai, India

the sample set constraint. Third, ifm is increased, it can be scaled

to have a wider coverage, because the sampling process of LHS is

based onm.

The RRS algorithm has the exploitation and exploration struc-

ture commonly seen in search-based algorithms. In the exploration

stage, RRS searches in a sample set that is taken from the whole

parameter space and finds a promising sample that has the best

performance. Then, it starts an exploitation stage by searching

around the promising sample in the local parameter subspace. The

exploitation stage is for locally searching the best point. When

no improvement is made in the exploitation stage, RRS reenters

the exploration stage to search globally to avoid local suboptimal

results.

RRS algorithm is a scalable optimization algorithm. First, with

the sample set size constraint, we can actually tune the optimiza-

tion problem into one for finding a configuration setting better

than a known setting. As a search-based method, RRS works for

a sample set of any size. Second, RRS will find a better answer if

a larger set of samples is provided, as it can search locally around

the best sample. Third, RRS will not be stuck in local sub-optimal

areas, because it has the exploration stage.

5 HOW ACTS BENEFITS USERS

We have implemented LHS and RRS with the flexible ACTS archi-

tecture, as well as trying other sampling and optimization algo-

rithms.We apply the ACTS implementation toMySQL and Tomcat

to demonstrate how ACTS can benefit users.

ACTS can bring about the benefits of manual configuration

tuning by improving system performance and increasing system

utilization. Besides, due to its objectivity, ACTS also brings about

the extra benefits such as enabling fairer system comparisons and

identifying system bottlenecks.

5.1 Improving System Performance:
11 Times Better

Configuration tuning can improve the system performance, thus

manual configuration tuning before using a system is in fact a

common practice. General rules of "best practices" can be found on

theWeb formany popular systems, but they do not always provide

the best results in many cases. Besides, some rules are difficult for

common users to follow. As a result, although manual configura-

tion tuning can improve system performance, users cannot always

tune a system to the system’s best potential.

ACTS only changes the configuration settings of a system, but

the possible performance gain can be as much as 11 times. In

the example of MySQL, the best configuration setting suggested

by ACTS can reach a throughput of 118184 ops/sec, while that

for the default setting is only 9815 ops/sec. In comparison, many

systems implementing new designs can only improve the system

performance by a limited percentage or multiple times. That is, an

easy change of the configuration settings can benefit the usermuch

more than laboriously implementing new designs. Moreover, as

many workloads are repetitive and recurring [13, 25], this perfor-

mance gain can actually be highly significant to users.

5.2 Improving System Utilization:
Eliminating 1 from every 26

ACTS can also improve system utilization by reducing the de-

mands of virtual machines. Nowadays, it is common that many sys-

tems are deployed on the virtual machines in the cloud. Improving

the throughputs of a single virtual machine can in turn reducing

the number of virtual machines in need.

In a use case of Tomcat, we apply ACTS to Tomcat servers

deployed on virtual machines, which run on physical machines

equipped with ARM CPUs. Each virtual machine is configured to

run with 8 cores, among which four are assigned to process the

network communications. Under the default configuration setting,

the utilizations of the four cores serving network communications

are fully loaded, while the utilizations of the other four processing

Table 1: ACTS improving performances of a fully-utilized

Tomcat server.

Metrics Default BestConfig Improvement

Txns/seconds 978 1018 4.07% ↑

Hits/seconds 3235 3620 11.91% ↑

Passed Txns 3184598 3381644 6.19% ↑

Failed Txns 165 144 12.73% ↓

Errors 37 34 8.11% ↓

Simulator Optimizer

Parameters

Responses

Real

Systems
Monitor

and Model

Models Parameters

Monitored

Metrics

(a) Simulation-based tuning

Sample

Database Learner/

Optimizer

(Parameters,

Responses)

Real

Systems

Parameters

Monitored

Metrics

(b) Large-sample-set-based tuning

Sample

Database

Tuner/

Sampler/

Optimizer

(Parameters, responses)

Real

Systems

Parameters

Monitored

Metrics

Model

Database

Models

Models

Commands

(c) Deployment-irrelevant tuning

Assumptions
Tuning System

Boundary

Tuning System

Components

Figure 3: Common assumptions and architectures for configuration tuning in related works. (Best view in color)

APSys ’17, September 2-3, 2017, Mumbai, India Yuqing Zhu, Jianxun Liu, Mengying Guo, Wenlong Ma, Yungang Bao

cores are about 80%. By automatic configuration tuning, a better

configuration setting is found to improve the performance of the

deployment by 4%, while the CPU utilizations remain the same.

The performance results of the tuned and the default configuration

settings are presented in Table 1. We can observe improvements

on every performance metric by the tuned configuration setting.

With this improvement on throughput, we can eliminate 1 virtual

machine from every 26 virtualmachines, if the tuned configuration

setting is used instead.

5.3 Saving Labor Costs:
Machine-Days vs. Man-Months

Configuration tuning is highly time-consuming and laborious. It

requires the users: 1) to find the heuristics for tuning; 2) to man-

ually change the system configuration settings and run workload

tests; and, 3) to iteratively go through the second step many times

till a satisfactory performance is obtained. Sometimes, the heuris-

tics in the first step might misguide the users, as some heuristics

are correct for one workload but not others; then, the latter two

steps are in vain.

In our experience with MySQL tuning, it has once taken five

junior employees about half a year to find an appropriate confi-

guration setting for a cloud application workload. We have also

exploited our ACTS system to tune the same system deployment.

A better performance is achieved within two days. Automatic con-

figuration tuning not only saves labor costs, but also shortens

the tuning time from months to days. Even if system experts

might tune a system much better and faster than common users,

they are very expensive to hire [35]. In comparison, automatic

configuration tuning almost involves no labor costs.

5.4 Fairer Benchmarking and Comparison of
Systems

Benchmarking is a well-established method for comparing the

performance of various hardware or software systems [15, 30], e.g.,

running SPEC for hardware comparison [9] or TPC benchmarks

for database systems [10].To enable an apples-to-apples compari-

son between systems, it is required that the only changed fac-

tor on benchmarking is the system under test. Besides, to get a

good benchmarking result, the system under test must be well

tuned [38, 43]. Configuration tuning is part of the performance

tuning process. However, the performance tuning process is highly

subjective and depends heavily on the tuning experts.

ACTS enables an objective tuning process and enables fairer

starting points for benchmarking. As demonstrated by the MySQL

case, a simple change of parameters can lead to more than 11

times performance improvement. As many new system designs

can only improve system performances by some percentage or

multiple times, it is more relevant that any improvement on sys-

tem be tested on an optimized system state. Without a proper

configuration tuning process, the benchmarking results can be

highly suspicious or misguiding. As previous configuration tuning

is usuallymanualwork, there is noway to define how a system is in

a state ready for benchmarking. To tap the performance potential

of a system, system users need help in configuration tuning.

5.5 Identifying System Bottlenecks

In the use case of Big Data, it is common that multiple systems are

deployed simultaneously for an application. For example, wemight

need to deploy the Hadoop file system for using Spark, or run a

workload balancing system to distribute requests to the backend

database system. Among the co-deployed systems, we might need

to find out which system is the bottleneck in order to improve the

overall performance.

ACTS can help identify system bottlenecks by (1) tuning the sub-

system to its best performance; and, (2) combine systems to tune

for the best performance. Take the database system for example.

Database is usually deployed along with a front-end caching and

load balancing system. Once we have tuned a database system by

itself and improved the performance by 63%. Then, we apply the

same workload to the tuned database system through a front-end

caching and load balancing system. Even after a long time tuning,

we found that the performance remaind at the untuned level for the

database system co-deployed with the front-end system. By such,

we located the bottleneck to be the front-end caching and load

balancing system. Without automatic configuration tuning, we

would not be able tomake surewhether the reason is configuration

setting or systems themselves.

Furthermore, by automatically tuning each system or the sys-

tem combination to its best performance, we can also identify the

bottleneck to be a specific system, if the system has the worst

performance among all systems and system combinations; or, if the

system combination has the worst performance, the bottleneck is

the specific system combination. When a combination of systems

has the worst performance, it indicates that the member systems

are having interactions affecting the overall performance. This

bottleneck identification can help users decide whether to improve

the design of a specific system or to reduce the influences between

systems.

6 CONCLUSION

In this paper, we comprehensively investigate the challenges and

analyze the characteristics of the ACTS problem. The solution

to the ACTS problem must guarantee scalability with regard to

resource limit, configuration parameter set, SUT, deployment en-

vironment and workload. We propose and implement a prelimi-

nary ACTS solution. This solution features a flexible architecture,

which enables the easy integration of various SUTs, deployment

environments and workloads, as well as scalable sampling me-

thods and optimization algorithms. The scalable sampling method

and optimization algorithm adopted in the preliminary solution

are LHS and RRS respectively. Based on the initial experimental

results, we demonstrate that ACTS can benefit users in facilitating

the system usage, improving the system performance, increasing

the system utilization, saving labor costs, fairer benchmarking

results, system bottleneck identification, etc.

Systems are becomingmore complex nowadays.We believe that

ACTS will become more beneficial or even indispensable to users.

As a result, we believe that future systems should be equipped

with automatic configuration tuning. We have only proposed a

preliminary solution to the ACTS problem to demonstrate that

ACTS in Need: Automatic Configuration Tuning

with Scalability Guarantees APSys ’17, September 2-3, 2017, Mumbai, India

ACTS is solvable. Great research opportunities exist in devising

better solutions to ACTS and equipping systems with ACTS.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Cheng Li, and the anony-

mous reviewers for their constructive comments and inputs to

improve our paper. This work is in part supported by the Na-

tional Natural Science Foundation of China (Grant No. 61303054),

the State Key Development Program for Basic Research of China

(Grant No. 2014CB340402) and gifts from Huawei.

REFERENCES
[1] 2017. 17 KEY MYSQL CONFIG FILE SETTINGS (MYSQL 5.7 PROOF).

http://www.speedemy.com/17-key-mysql-config-file-settings-mysql-5-7-proof/.
(2017).

[2] 2017. Apache Hadoop Website. http://hadoop.apache.org/. (2017).
[3] 2017. Apache Spark Website. http://spark.apache.org/. (2017).
[4] 2017. Apache Tomcat Website. http://tomcat.apache.org/. (2017).
[5] 2017. Data, data everywhere. http://www.economist.com/node/

15557443. (2017).
[6] 2017. Factor Analysis. https://en.wikipedia.org/wiki/Factor_

analysis. (2017).
[7] 2017. MySQL Website. http://www.mysql.com/. (2017).
[8] 2017. Principal component analysis. https://en.wikipedia.org/

wiki/Principal_component_analysis. (2017).
[9] 2017. Standard Performance Evaluation Corporation (SPEC).

http://www.spec.org/. (2017).
[10] 2017. Transaction Processing Performance Council (TPC). http://www.tpc.org/.

(2017).
[11] 2017. Tuning Spark. http://spark.apache.org/docs/latest/

tuning.html. (2017).
[12] 2017. Tuning YARN. https://www.cloudera.com/documentation /enterprise/5-

6-x/topics/cdh_ig_yarn_tuning.html. (2017).
[13] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-ChuanWu, Ion Stoica,

and Jingren Zhou. 2012. Re-optimizing data-parallel computing. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 21–21.

[14] AMD. 2017. Hadoop Performance Tuning Guide.
https://developer.amd.com/wordpress/media/2012/10/Hadoop
_Tuning_Guide-Version5.pdf. (2017).

[15] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, et al. 2006. The landscape of parallel computing
research: A view from Berkeley. Technical Report. UCB/EECS-2006-183, EECS
Department, University of California, Berkeley.

[16] Theophilus Benson, Aditya Akella, and Aman Shaikh. 2011. Demystifying
configuration challenges and trade-offs in network-based isp services. In ACM
SIGCOMM Computer Communication Review, Vol. 41. ACM, 302–313.

[17] Phil Bernstein, Michael Brodie, Stefano Ceri, David DeWitt, Mike Franklin,
Hector Garcia-Molina, Jim Gray, Jerry Held, Joe Hellerstein, HV Jagadish, et al.
1998. The Asilomar report on database research. ACM Sigmod record 27, 4 (1998),
74–80.

[18] Josep Lluís Berral, Nicolas Poggi, David Carrera, Aaron Call, Rob Reinauer, and
Daron Green. 2015. Aloja-ml: A framework for automating characterization
and knowledge discovery in hadoop deployments. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 1701–1710.

[19] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. 2009. A reinforcement learning
approach to online web systems auto-configuration. In Distributed Computing
Systems, 2009. ICDCS’09. 29th IEEE International Conference on. IEEE, 2–11.

[20] Yanpei Chen, Archana Sulochana Ganapathi, Rean Griffith, and Randy H Katz.
2010. Towards understanding cloud performance tradeoffs using statistical
workload analysis and replay. University of California at Berkeley, Technical
Report No. UCB/EECS-2010-81 (2010).

[21] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning data-
base configuration parameters with iTuned. Proceedings of the VLDB Endowment
2, 1 (2009), 1246–1257.

[22] George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai, and Peter M
Chen. 2002. ReVirt: Enabling intrusion analysis through virtual-machine logging
and replay. ACM SIGOPS Operating Systems Review 36, SI (2002), 211–224.

[23] Steve Evans. 2010. Windows Azure Staging Model.
http://www.loudsteve.com/2010/10/10/windows-azure-staging-model/. (2010).

[24] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C.
Kaynak, A. Popescu, A. Ailamaki, and B. Falsafi. 2012. Clearing the Clouds: A
Study of Emerging Workloads on Modern Hardware. Architectural Support for
Programming Languages and Operating Systems (2012).

[25] Andrew D Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo
Fonseca. 2012. Jockey: guaranteed job latency in data parallel clusters. In
Proceedings of the 7th ACM european conference on Computer Systems. ACM, 99–
112.

[26] Adem Efe Gencer, David Bindel, Emin Gün Sirer, and Robbert van Renesse. 2015.
Configuring Distributed Computations Using Response Surfaces. In Proceedings
of the 16th Annual Middleware Conference. ACM, 235–246.

[27] Ahmad Ghazal, Minqing Hu, Tilmann Rabl, Francois Raab, Meikel Poess, Alain
Crolotte, and Hans-Arno Jacobsen. 2013. BigBench: Towards an Industry
Standard Benchmark for Big Data Analytics. In Proc. of SIGMOD 2013. ACM.

[28] Vitthal Gogate. 2017. Hadoop configuration & performance tuning.
https://www.slideshare.net/vgogate/hadoop-configuration-performance-
tuning. (2017).

[29] Bilal Gonen, Gurhan Gunduz, and Murat Yuksel. 2015. Automated network
management and configuration using Probabilistic Trans-Algorithmic Search.
Computer Networks 76 (2015), 275–293.

[30] Jim Grey. 1993. The Benchmark Handbook for Database and Transaction
Systems. (1993).

[31] Herodotos Herodotou, Fei Dong, and Shivnath Babu. 2011. No one (cluster) size
fits all: automatic cluster sizing for data-intensive analytics. In Proceedings of the
2nd ACM Symposium on Cloud Computing. ACM, 18.

[32] Manyika James, Chui Michael, Brown Brad, Bughin Jacques, D Richard, R
Charles, and H Angela. 2011. Big data: the next frontier for innovation,
competition, and productivity. The McKinsey Global Institute (2011).

[33] CHRIS LEMA. 2015. Why do I need a staging environment? Let me tell you.
http://chrislema.com/staging-environment/. (2015).

[34] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming Zhang.
2011. Cloudprophet: towards application performance prediction in cloud. ACM
SIGCOMM Computer Communication Review 41, 4 (2011), 426–427.

[35] Marc Linster. 2014. Best practices for becoming an exceptional post-
gres dba. https://www.slideshare.net/EnterpriseDB/dba-best-practices-webinar-
slides-final. (2014).

[36] Michael D McKay, Richard J Beckman, and William J Conover. 2000. A compa-
rison of three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics 42, 1 (2000), 55–61.

[37] Peter Murray. 2017. Traditional Development/Integration/
Staging/Production Practice for Software Development.
http://dltj.org/article/software-development-practice/. (2017).

[38] G.P. Musumeci, M. Loukides, and M.K. Loukides. 2002. System Performance
Tuning. O’Reilly Media.

[39] Konrad Ohms. 2015. Best practices for developing
and organizing multi-stage app deployments in Bluemix.
https://www.ibm.com/blogs/bluemix/2015/12/best-practices-for-multistage-
app-deployments-in-bluemix/. (2015).

[40] Pradeep Padala, Kang G Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang,
Sharad Singhal, Arif Merchant, and Kenneth Salem. 2007. Adaptive control
of virtualized resources in utility computing environments. In ACM SIGOPS
Operating Systems Review, Vol. 41. ACM, 289–302.

[41] Quora. 2013. DevOps: How do companies like Facebook, Twitter, and
Tumblr handle their stage environments? https://www.quora.com/DevOps-
How-do-companies-like-Facebook-Twitter-and-Tumblr-handle-their-stage-
environments. (2013).

[42] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic DatabaseManagement System Tuning Through Large-scaleMachine
Learning. In Proceedings of the 2017 ACM International Conference on Manage-
ment of Data. ACM, 1009–1024.

[43] VMware. 2017. Performance Tuning and Benchmarking Guidelines for VMware
Workstation 6. https://www.vmware.com/pdf/WS6_Performance_Tuning_and_
Benchmarking.pdf. (2017).

[44] Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H Xia, and Li Zhang. 2004.
A smart hill-climbing algorithm for application server configuration. In Proceed-
ings of the 13th international conference on World Wide Web. ACM, 287–296.

[45] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, you have given me too many knobs!: under-
standing and dealing with over-designed configuration in system software. In
Proceedings of the 10th Joint Meeting on Foundations of Software Engineering.
ACM, 307–319.

[46] Tao Ye and Shivkumar Kalyanaraman. 2003. A recursive random search
algorithm for large-scale network parameter configuration. ACM SIGMETRICS
Performance Evaluation Review 31, 1 (2003), 196–205.

[47] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-
anth Bala, Tianyin Xu, and Yuanyuan Zhou. 2014. Encore: Exploiting system
environment and correlation information for misconfiguration detection. ACM
SIGPLAN Notices 49, 4 (2014), 687–700.

APSys ’17, September 2-3, 2017, Mumbai, India Yuqing Zhu, Jianxun Liu, Mengying Guo, Wenlong Ma, Yungang Bao

[48] Wei Zheng, Ricardo Bianchini, and Thu D. Nguyen. 2007. Automatic Confi-
guration of Internet Services. In Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007. ACM, New York, NY, USA, 219–
229.

	Abstract
	1 Introduction
	2 New Challenges of ACT
	2.1 A Large Number of Knobs
	2.2 Dynamicity and Complexity
	2.3 Costly Sample Collection

	3 The New Problem: ACTS
	4 A Preliminary ACTS Solution
	4.1 Design Rationale
	4.2 A Flexible Architecture
	4.3 Subproblem Solutions: LHS + RRS

	5 How ACTS Benefits Users
	5.1 Improving System Performance:11 Times Better
	5.2 Improving System Utilization:Eliminating 1 from every 26
	5.3 Saving Labor Costs:Machine-Days vs. Man-Months
	5.4 Fairer Benchmarking and Comparison of Systems
	5.5 Identifying System Bottlenecks

	6 Conclusion
	References

