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Abstract—Transaction and high availability are both im-
portant to applications. While data partition, distribution
and replication are the three key mechanisms to guarantee
high availability, a coordination to reach consensuses on
replica state transitions, transaction operation orders and
commit decisions is required for transaction processing. This
coordination impairs transaction processing performance. In
classic transactional approaches, lock granularity is exploited
to trade off consistency for performance under weaker
isolation levels. We question whether transaction processing
performance can be similarly improved under weaker isolation
levels by consensus reduction.

To carry out consensus reduction, we categorize transactions
based on their scopes of consensus, as well as their requirements
on consensus. A transaction in one category can be reduced to
multiple transactions in other categories with smaller consensus
scope and weaker consensus requirement. We theoretically
analyze what anomalies the reduction can lead to. We thus find
and define eight isolation levels by anomaly sets. We experiment
to find out how these weaker isolation levels can improve
transaction processing performance. Interesting results show
that three weak isolation levels improve performance, while
the weakest isolation level has the worst performance. Results
in this paper enable users to actively choose the appropriate
isolation levels for their applications.

Keywords-transaction processing; concurrency control; coor-
dination; consensus reduction; isolation level; consistency

I. INTRODUCTION

Transactional support can turn hours of big data process-
ing into milliseconds of simple queries by enabling fast
access in query processing, data warehousing, data visualiza-
tion, etc., through general system functions like incremental
processing [1] and materialized view maintenance [2], [3].
It continues to be recognized as a valuable functionality
to applications [4]. At the same time, high availability is
taken as fundamental to online services [5], [6]. Several
approaches to supporting strong transactional semantics in
highly available datastores are proposed in recent years, e.g.,
MDCC [7], Helios [8], and Hyder [9].

The three fundamental mechanisms for high availability,
i.e. data partition, distribution and replication, complicate
transaction processing [10]. So does the fault tolerance
requirement implied by high availability. A transaction
has to coordinate all data partitions and their replicas it
attempts to access, so as to reach consensuses on replica
state transitions, transaction operation orders and commit
decisions [11], [8]. Without consensuses on replica state
transitions, the states of multiple replicas can diverge

increasingly [12]. Consensuses on transaction operation
orders and commit decisions among data partitions are also
key to correct and consistent database states [13]. The co-
ordination for reaching multiple consensuses takes multiple
communications across servers and limits transaction con-
currency, thus impairing performance. Though coordinator-
less transaction processing is possible, it requires a close and
extensive study of every application [14], [15].

Conventionally, database systems offer weaker isolation
levels to applications for better transaction processing
performance [16], [17], [18]. For example, database systems
adopting locking-based protocols implement weak isolation
levels by locking with smaller granularity and shorter
duration [16]. As the new transactional proposals [7],
[11], [8] for distributed highly available datastores have
a focus on consensus, we question whether it is possible
to improve transaction processing performance similarly in
highly available datastores under weaker isolation levels by
consensus reduction.

In this paper, we propose to improve transaction pro-
cessing performance by consensus reduction, which relaxes
the consensus scope and the consensus requirement of
transaction processing. This reduction can cause anoma-
lies [17], which can result in different transaction execution
results and database states satisfying various applications’
requirements. We analyze what anomalies the reduction
can lead to and define eight transaction isolation levels
accordingly, exploiting the theoretical tool of serializability
analysis [19], [17]. To find out how the new isolation levels
can improve performance, we experiment with various de-
ployment scenarios, varying the replica number, the replica
distribution, and the replica locations. The experimental
results are contrary to conventional impression that weaker
isolation levels always improve performance. Only three
weak isolation level can improve performance. The weakest
isolation level leads to the worst performance.

In sum, we make the following contributions in this paper.

o We propose a consensus-based classification of tran-

sactions, and the reduction of a transaction type into
types of transactions with smaller consensus scope and
weaker consensus requirement.

o We theoretically analyze anomalies caused by con-

sensus reduction, to help understand effects when
a reduced transaction is decomposed into multiple
transactions for execution. We find new anomalies that
never occurred in conventional databases.



« We find and define eight weak transaction isolation lev-
els for highly available datastores, through a consensus
reduction approach different from classic approaches.

« We demonstrate that three weak isolation levels can
improve transaction processing performance in highly
available datastores.

The analyses and the definitions in this paper enable
users to check which set of anomalies their applications can
tolerate. As each anomaly set corresponds to an isolation
level, they can thus find out which isolation levels are
feasible for their applications. Among these isolation levels,
they can then choose the isolation level with the best
performance for their implementations.

The rest of the paper is organized as follows. Section
IT presents our classification of transactions along the two-
dimensions of consensus scope and consensus requirement.
Section III illustrates consensus reduction and transaction
decomposition, along with an analysis of anomalies. Section
IV summarizes anomaly sets for different decompositions
and defines the eight isolation levels accordingly. Section V
demonstrates our experimental results with the new isolation
levels. Section VI reviews related work. Section VII draws
the conclusion.

II. TRANSACTION CONSENSUSES AND CATEGORIES

Conventionally, isolation levels are implemented by lock-
ing in different granularity and duration [16]. For consensus
reduction, we similarly identify two aspects to be adjusted,
i.e. the scope of consensus and the requirement of consensus.

The scope of consensus relates to the data scope of a
transaction. The larger the consensus scope is, the greater
possibility a transaction’s data set intersects with others’,
and the greater this intersection can possibly be. The greater
transactions intersect, the more coordination is needed and
the more concurrency is compromised. In fact, transactions
executed on non-intersecting sets of data can be concurrently
processed with serializability even without coordination.
Thus, the scope of consensus indicates the degree of
concurrency.

The requirement of consensus includes the agreement on
replica state transitions, transaction operation orders and
commit decisions. The more agreement in involved, the more
coordination is needed, and the stronger the requirement of
consensus is. Some read-only transactions might have no
consensus requirement, while others have strong consensus
requirement. The consensus requirement is fulfilled on a
transaction’s commitment, which is a coordination point
extending the transaction execution time and thus reducing
concurrency. That is, the requirement of consensus is also
an indication of concurrency possibility.

Categorization. We categorize transactions according
to the two aspects. For the consensus scope, we divide
transactions into three categories, i.e., operation-unit, intra-
shard, and cross-shard. Transactions in the operation-unit
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Figure 1. Consensus-oriented classification of transactions.

category are composed of one single operation. Transactions
in the intra-shard category involve multiple operations on
data of the same data shard (a.k.a., data partition), while
those in the cross-shard category operate on data across
multiple shards. For each of the three categories, transactions
can further be divided into multiple types according to their
consensus requirement. All transaction categories and types
are illustrated along the two axes of consensus scope and
requirement in Figure 1.

Operation-Unit Transactions. Four types of transactions
are in this category, i.e. read-any (RA), write-any (WA),
read-on-condition (RC) and write-on-condition (WC). RA
and WA require no consensus in processing, while RC and
WC requires only consensus local to the data shard. RC and
WC transactions make stronger guarantees than RA and WA
by checking the right state before execution, e.g., the value
of the most recent state or the state after a certain time.

Intra-Shard Transactions. Transactions in this category
include read-multiple (RM), write-multiple (WM), and read-
test-write (RTW). RTW transactions first read all involving
data, then test whether conditions are met, and finally
apply writes (or simply abort). The execution of RM
requires a database state satisfying all its reads’ conditions.
Then the multiple reads retrieve values and return, with
no writes intervening their executions. WM is processed
similarly as RM, though WM requires a consensus on replica
state transitions while RM does not. The execution of all
transactions in this category must base on the consensus on
replica states.

Cross-Shard Transactions. Transactions in this category
require consensus on both state transitions among replicas
and operation sequences across multiple shards. Such
transactions include read-only-with-commit (ROC), write-
only-with-commit (WOC), and read-check-write (RCW).
RCW is the only type that requires a commit-decision
consensus in this category. For RCW, the transaction can
commit or abort, but the decision must be made on the check,
which is after the necessary reads and before the writes.

III. REDUCTION AND DECOMPOSITION
For consensus reduction, we decompose a transaction
with a larger consensus scope and a stronger consensus



requirement into transactions with smaller consensus scopes
and fewer consensus requirements.
A. Anomalies in Reduction and Decomposition

The consensus reduction and the transaction decompo-
sition can lead to anomalies of database states and tran-
saction execution results. We take a conflict-and-anomaly-
based approach [17] by identifying all conflicting relations
and all possible anomalies arising due to a transaction
decomposition. To simplify the discussion, we assume that
only the transaction under discussion is decomposed. All
other concurrent transactions are assumed to be executed
with atomicity, i.e. not decomposed. We then generalize the
analysis to a sequence of interdependent transactions.

Conflict-based enumeration. Anomalies arise when con-
flicting operations, i.e. consecutive read-write and consecu-
tive write-write on the same data, are not compatible with
the serial execution of transactions. Identifying the different
conflicting relations between transactions’ operations can
help define isolation levels [20]. Transactions with conflict-
ing operations are in dependence relations. Anomalies are
dependence cycles of concurrent transactions which have
operations in conflicting relations. We thus first recognize
all possible decompositions of a transaction type, then
enumerate conflicting operation relations between involving
transactions, and finally find out the resulting anomalies.

As operation-unit transactions cannot be further decom-
posed, we start the decomposition analysis from the intra-
shard category. Note that anomalies can lead to incorrect
results of the decomposed transaction (denoted as TI),
as well as transactions (denoted as T2 and processed
with atomic execution ) processed concurrently to the
decomposed one. We identify both and denote each with
different names in the analysis.

Naming Rules. We name the resulting anomalies with
two or three parts. The first part of an anomaly name
comes from the name of a classic anomaly name. We
relate each new anomaly with the eight widely-accepted
classic anomalies [17], which are represented in operation
sequences as follows. If there is only one anomaly relating
to a classic anomaly, the name of the anomaly has two parts
(e.g. A3-rml); otherwise, three parts (e.g. ASA-1-rml).

In the following, r stands for read, w for write, ¢ for
commit and a for abort. The number following an operation
corresponds to the number of the transaction, e.g. r/ for a
read of transaction 71. The x or y in the brackets is the data
item used by the preceding operation.

A0 wl[x]..w2[x]...(al/a2)

Al wl[x]...r2[x]...(al/c2 in any order)

A2 rl[x]...w2[x]...((cl/al) and (c2/a2) in any order)
A3 rl[P]..w2[y in P]...((c1/al) and (c2/a2) in any order)
A4 rl[x]..w2[x]..wl[x]...cl

A5A rl[x]..w2[x]...w2[y]...c2...r1[y]...(c1/al)

ASB rl[x]...12[y]..wl[y]...w2[x]...(c] and c2 occur)

The second part of a three-part name is the sequence
number that differentiates the multiple anomalies related to

the same classic anomaly. The second part of a two-part
name and the third part of a three-part name consist of two
components, i.e. the decomposed transaction type name and
a number. For this number, / represents the anomaly causing
the incorrect result of T1, while 2 for T2 and 0 for both.

B. Intra-Shard Transactions

Read-Multiple Transaction. RM can be decomposed
into multiple RCs and/or RAs. The RA decomposition of
RM leads to conflicting scenarios of (r1—w2, w2—rl) and
(w2—rl, r1—-w2). Enumerating all incompatible operation
sequences, we get the following anomalies:

RM—RA(WM, RTW, WOC, RCW)

A3-rm1 r1[P]...w2[x,y in P]...c2...r1[y in P]... (Phantom)
ASA-1-rm1 rl[x]..w2[x]...w2[y]...c2...r1[y]... (Read Skew)
AS5A-2-rm1 w2[x]...:r1[x]...:r1[y]...w2[y]...c2... (Read Skew)

RM can also be decomposed in to RC. Different from
RA, RC is a read transaction that cannot fall between other
transactions’ operations. Therefore, removing anomalies
with transaction T1’s operations falling between other
transactions, we get the following anomalies for the RC
decomposition of RM.

RM—RC(WM, RTW, WOC, RCW)

A3-rml r1[P]...w2[x,y in P]...c2...rl[y in P]... (Phantom)
AS5A-1-rm1 rl[x]...w2[x]...w2[y]...c2...r1[y]... (Read Skew)

Recall our assumption that all transactions are executed
serially except for the decomposed T1. Hence, the above
anomalies can cause not only by a single transaction, but also
by multiple transactions linearly aligned with dependence re-
lations, e.g. ...r1[x]...w2[x]w2[y] c2...w3[y]w3[z]c3...r1[z]...
We then generalize the transaction T2 into a serially ordered
sequence of transactions, of which two have operations
conflicting with transaction T1. Thus, the A3-rml and the
AS5A-1-rm1 anomalies can be described in generalized forms
as follows.

RM—RA/RC(WM, RTW, WOC, RCW)

A3-rml r1[P=P1V P2]..w2[x in P1]...c2...w3[y in P2] ...c3...

rl[y in P]...(Phantom)
ASA-1-rm1 rl[x]...w2[x]...c2...w3[y]...c3...r1[y]...(Read Skew)

Anomaly AS5A-2-rml cannot be generalized similarly.
The cause of this anomaly is that transaction T1 falls
between another transaction’s operations. Generalization can
invalidate this cause. Note that, decomposing RM into
RA and RC leads to a result similar to that for the RA
decomposition of RM. So does decomposing WM into WA
and WC.

Write-Multiple Transaction. WM can be decomposed
into multiple WAs and/or WCs. The WA decomposition
of WM can cause conflicting scenarios including (wl—r2,
r2—wl), 12—wl, wl—12), (wl—w2, w2—wl), (W2—wl,
wl—=w2), (wl—=r2, w2—wl), and (12—wl, wl—w2).
We do not include the conflicting scenarios of (W2—wl,



wl—12) and (wl—w2, r2—w1) because we assume all
writes are applied after all reads in a transaction.

Six conflicting relations and anomalies exist. Further
grouping anomalies by the type of transaction T2, we get
the following anomaly set. Anomalies A6- are introduced.
A6- series of anomalies cannot happen in classic databases
because of the locking implementation and the two assump-
tions of locking, i.e., well-formed and two-phase [16].

WM—WA(RM,RTW,ROC,RCW)
ASA-1-wm2  12[x]..wl[x]...wl[y]...12[y]...c2...(Read Skew)
A5A-2-wm2  wl[x]..12[x]...12[y]...c2...w1[y]...(Read Skew)
WM—WA(WM,RTW,WOC,RCW)
A6-1-wm0 w1[x]...w2[x]...w2[y]...c2...w1[y]...(Inconsistent Write)
A6-2-wm0 w2[x]..wl[x]...wl[y]...w2[y]...c2...(Inconsistent Write)
WM—WA(RTW,RCW)
Ad-wm2  wl[x]...r”2[x]...w2[y]...c2...w1[y]...(Lost Update)
A6-3-wm0 r2[x]...wl[x]...w1[y]...w2[y]...c2...(Inconsistent Write)

The WC decomposition analysis of WM is similar to the

RC decomposition analysis of RM. The following is the
resulting anomaly set.

WM—WC(RM,RTW,ROC,RCW)
A5A-2-wm2  wl[x]..12[x]....2[y]...c2..w1[y]...(Read Skew)
WM—WC(WM,RTW,WOC,RCW)
A6-1-wm0 wl[x]...w2[x]...w2[y]...c2...w1[y]...(Inconsistent Write)
WM—WC(RTW,RCW)
Ad-wm2  wl[x]..r2[x]...w2[y]...c2...w1[y]...(Lost Update)

For the conflicting relations between T1 and more
transactions, anomalies leading to incorrect results of tran-
saction T2 cannot be generalized for multiple transactions
linearly aligned with dependence relations. We thus remove
anomalies ASAx-2-wm2 and A4x-wm2. The conflicting
scenario of (wl—w2, r2—w1) can happen between T1 and
an ordered series of transactions, though not between T1 and
T2. Thus, we get the following anomalies.

WM—WA/WC(WM,RTW,WOC,RCW)

A6-1-wm0 wl[x]..w2[x]...c2...w3[y]...c3...w1[y]...(Inconsistent
Write)

WM—WA/WC(WM,RTW,WOC,RCW: RM,RTW,ROC,RCW)

A6-4-wm0 wl[x]...w2[x]...c2...r3[y]...c3...w1[y]...(Inconsistent
Write)

Read-Test-Write Transaction. RTW can be decomposed
in four ways, i.e., RC+WC, RC+WM, RM+WC, and
RM+WM. RA and WA are not used because RTW must
test the read value such that certain conditions must be met,
i.e. RC and WC are required.

We first study the decomposed form closest to the
original transaction, i.e., RM+WM. Since RM and WM
are atomic transactions, 18 =2 x 3 x 3 conflicting scenarios
exist. The 3 is for the three conflicting relations of rl
vs. w2 combined with wl vs. r2 and wl vs. w2. The
2 is because we can flip the two conflicting operations.
Assuming writes executed after all reads in a transaction
(or two-phase execution) and the execution atomicity of

transaction T2/RM/WM, 17 conflicting scenarios cannot
occur due to the requirement of double-writes/reads for T1,
or a transaction’s read coming after its write. Thus, there
remains one conflicting scenario, i.e., (rl—>w2, w2—wl).
We group anomalies by the transaction type of T2, apply
generalizations and thus get the following.

RTW—RMWM(WC,WM,RTW,WOC,RCW)
Ad-rmwm2  rl[x]..w2[x]...c2..wl[x]...(Lost Update)

RTW—RMWM(RTW,RCW)
ASB-rmwm0 rl1[x]..12[y]...w2[x]...c2...w1[y]...(Write Skew)

RTW—RMWM(WM,RTW,WOC,RCW)
A6-rmwm0 rl[x]..w2[x]...w2[y]...c2...w1[y]...(Inconsistent Write)

To generalize the analysis to a series of dependent
transactions, we first remove anomalies leading to only
incorrect results of transaction T2, i.e., A4x—rmwm2. Then,
among the 17 conflicting relations not occurring between
T1 and T2, only (r1-w2, r3—w1) can occur to T1 and an
ordered series of transactions. Thus, the following anomalies
can occur between T1 and multiple transactions.

RTW—RMWM(WC,WM,RTW,WOC,RCW)
Ad4-rmwm2  rl[x]..w2[x]...c2...r3[x]...c3...w1[x]...(Lost Update)

RTW—RMWM(RTW,RCW)
ASB-rmwm0 rl[x]...12[y]...c2...w3[x]...c3...w1[y]...(Write Skew)

RTW—RMWM(WM,RTW,WOC,RCW)
A6-rmwm0  rl[x]..w2[x]...c2...w3[y]...c3...w1[y]...(Inconsistent
Write)

By further decomposing the RM or/and WM parts of
RTW’s RM+WM decomposition, we can obtain the other
three decomposition schemes for RTW. It is easy to
notice that by decomposing the RM part of the RM+WM
decomposition, all anomalies caused by the decomposition
of RM into RCs remain for the RC+WM decomposition.
The same observation can be applied when decomposing
the WM part of the RM+WM decomposition. We thus have
the following proposition.

Proposition 1: Assume the decomposition of RTW into
RM+WM causing the set So of anomalies, and that of RM
into RCs causing S,, then the decomposition of RTW into
RC+WM causes anomalies S = Sy US,.

Similar analyses can also be made for the RM+WC
decomposition and the RC+WC decomposition of RTW. As
RTW has the testing phase, all RCs must finish before any
WC starts for the RC+WC decomposition. Hence, we can get
the following propositions for the RM+WC decomposition
and the RC+WC decomposition of RTW.

Proposition 2: Assume the decomposition of RTW into
RM+WM causing the set Sy of anomalies, and that of WM
into WCs causing Sy, then the decomposition of RTW into
RM+WC causes anomalies S = Sy US;.

Proposition 3: Assume the decomposition of RTW into
RM+WM causing the set Sy of anomalies, that of RM into
RCs causing Sy, and that of WM into WCs causing Sy, then




Table 1 Table III
ANOMALIES AND ANOMALY SETS ISOLATION LEVELS AND ANOMALY EFFECTS
[ Anomaly Sets | Anomalies Isolation Effects Ano-
Ska {A3-rml, ASA-1-rml, ASA-2-rml} phan- | read Tost write [ inconsis-

Skre {A3-rml, AS5A-l-rml} Levels tom skew | update | skew | tent write | maly #
s {Ad—wm2, ASA-1-wm2, ASA-2-wm2, A6—1-wm0 Sre V N 2
wa A6-2-wm0, A6-3-wm0, A6—4-wm0} Sra v v 3
Swe {Ad-wn2, ASA-2-wm2, A6-1l-wmO,A6-4—wmO} SrRMW M v V V 3
Srewc Srmwm USrc USwc Swe i v V 4
SrRCWM Srmwm U Src Swa V v v 7
Sruwc Srmwm USwe Sruwc V V V V 7
SrRMwM {A4-rmwm2, A5B-rmwm0O, A6-rmwmO} Srewm \/ \/ \/ \/ \/ 5
Srewc v V V V V 9

the decomposition of RTW into RM+WC causes anomalies
S =SoUS,US,.

Following from Proposition 1, 2, and 3, we can deduce
that the decomposition of RTW into RC+WC results in
Srewe = Srmwm U Sre U Sy, that of RTW into RC+WM
results in Sgewm = Srmwm U Sge, and that of RTW into
RM+WC results in Sgywe = Sruwy USwc.

C. Cross-Shard Transactions

Read-Only-with-Commit & Write-Only-with-Commit
Transactions. ROC can be decomposed in three ways.
The possible anomalies for ROC decompositions are the
same as decomposing RM into RCs, ie. A3-rml and
AS5A-1-rml, though the scopes of inconsistent data differ.
For the RM decomposition of ROC, these anomalies can
only be caused by concurrent cross-shard transactions, i.e.
WOC and RCW, while operations on the RC-decomposed
partitions can also conflict with intra-shard transactions
within the same partitions. Anyhow, the anomaly set and
the conflicting transaction types are the same as the RC
decomposition of RM. The above analysis can be similarly
carried out for WOC.

Read-Check-Write Transaction. The decomposition of
ROC+WOC is the closest to the original serial execution of
RCW due to the assumption of the two-phase execution. This
decomposition leads to a similar conflicting scenario with
that of decomposing RTW into RM+WM. Thus, the possible

Table II
WEAK ISOLATION LEVELS

Anomaly Set/ .e
Seq Isolatimi] Level Decomposition
1 Sra RM—RA
I Swa WM—WA
RM—RC; ROC—RC
il Ske ROC—RC+RM
ROC—RM
WM—WC ; WOC—WC
v Swe WOC—WC+WM
WOC—WM
RTW—RC+WC; RCW—RC+WC;
RCW—RC+WM; RCW—RM+WM
\Y% Srewe RCW—RC+WC+WM; RCW—RM+WC;
RCW—RC+RM+WC;RCW—RM+WC+WM;
RCW—RC+RM+WM;RCW —RC+RM+WC+WM
VI Srewar RTW—RC+WM; RCW—RC+WOC;
RCW—RC+RM+WOC; RCW—RM+WOC
VII Sranve RTW—RM+WC; RCW—ROC+WC
RCW—ROC+WM+WC;RCW—ROC+WM
VI | Skarwar RTW—RM+WM
RCW—ROC+WOC

anomaly set is the same as the RM+WM decomposition of
RTW. Conflicts can not only occur between the decomposed
RCW transactions and cross-shard transactions, but also
between the decomposed RCW transactions and intra-shard
transactions due to the existence of anomaly A4—rmwm2.

Furthermore, we can decompose ROC and WOC respec-
tively. With the assumption of the two-phase execution,
an anomaly analysis similar to that of RTW’s RM+WM
decomposition can be made. We call it sub-decomposition
analysis. Each sub-decomposition of ROC or WOC can lead
to an anomaly set being the union of anomaly sets for the
ROC+WOC decomposition and the sub-decomposition.

RCW has 16 = 4 x 4 decomposition plans, in which 4
ROC decompositions combines with 4 WOC decomposi-
tions. We cannot decompose RCW into multiple RTWs,
due to the two-phase assumption of transaction processing.
However, we can replace WM/RM with RTW in decompo-
sitions to get new decomposition schemes. In this situation,
RTW is in fact degraded into WM/RM transactions. Such
decompositions do not cause new anomalies. Thus, we do
not consider decomposing RCW into any forms of RTW
transactions. Table I and II summarize all decompositions,
the resulting anomalies and the anomaly sets.

IV. DEFINING ISOLATION LEVELS

Summarizing the analysis in the previous section,
only 13 anomalies can happen, including A3-rml,
Ad-wm2, Ad-rmwm2, AS5A-1-rml, A5SA-2-rml,
A5A-1-wm2, AS5A-2-wm2, AS5B-rmwmO,
A6-1-wm0, A6-2-wm0, A6-3-wm0, A6-4-wmO,
A6-rmwmO. The 13 anomalies can be grouped into eight
sets. Exploiting the definition methodology of the classic
work [17], we can accordingly define eight isolation
levels by these eight anomaly sets. The summarized
isolation levels are listed in Table II. While the four ANSI
isolation levels can be totally ordered by the degree of
consistency [21], these eight isolation levels do not have a
total order.

Anomalies in the eight sets can be categorized into five
effects, i.e. phantom, read skew, lost update, write skew,
and inconsistent write. Multiple execution sequences with
conflicting relations can contribute to the same effect. For
example, A4-wm2 and A4-rmwm2 can both cause the lost
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update effect. In Table III, we illustrate the effects caused by
each isolation level and list the number of possible anomalies
under each isolation level. All anomaly sets in Table III are
sorted first on the number of effects and then on the number
of member anomalies.

The indication of anomaly numbers is that, assuming all
execution sequences of transactions generated with the same
possibility, the more anomalies for an isolation level, the
higher possibility of inconsistencies. More anomalies lead
to more abnormal execution sequences, taking up a larger
portion of the whole execution sequence space and leading
to a higher possibility of conflicts.

V. EXPERIMENTS
In this section, we seek to find out how the weak isolation
levels can improve transaction processing performance.

A. Experimental Setup

We use an eight-node cluster in the experiments. Each
node is equipped with 8 cores, 60GB memory and 1Gbps
network. Using software configurations, we emulate a multi-
datacenter scenario, in which three or five datacenters may
exist. Datacenter RTTs are randomly chosen from 20 to
200 times of the intra-datacenter RTT, which takes about
0.5 milliseconds. In each datacenter, 20 nodes are initiated.
A server and a client run on each node. Data shards are
distributed to nodes. Each shard has three indistinguishable
replicas. We exploit the implementation of MDCC [7] for
highly available datastores in the experiment.

To make thorough evaluation, we vary datastore deploy-
ment scenarios, changing the replica number, the replica
distribution, and the replica location. We consider the fol-
lowing cases: (1) placing a quorum of replicas in one of five
datacenters (QuorumInOneDc); (2) uniformly distributing
data to nodes accross five datacenters (DHT); (3) placing
a complete copy of data in each of three datacenters
(3DcWholeRep); (4) placing a complete copy of data in
each of five datacenters (5DcWholeRep); (5) accessing
data following Zipfian distribution under DHT condition
(ZipfianAccess), in comparison to the uniform accessing
pattern of the previous four cases.

In each experiment, we execute 10 million operations,
of which reads and writes take up 50% respectively.
An experiment ends when all operations are executed.
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Figure 3. Average transaction latency.

We test isolation levels V-VIII by grouping operations
into transactions of RM+WM, RM+WOC, ROC+WM, and
ROC+WOC. We executes one grouping in each experiment.
RCW transactions with the serializability guarantee is
executed for comparison. We test isolation levels III and
IV, by comparing the executions of transactions RM vs.
RC, WM vs. WC, and RM+WM vs. RC+WC respectively.
Isolation levels I and II are not tested because RA and WA
are seldom used.

B. Results and Discussion

Figure 2 demonstrates the execution time for four cases of
3DcWholeRep, SDcWholeRep, DHT and QuorumInOneDc;
and Figure 3 shows the average transaction processing times.
The experimental results disagree with our previous under-
standings of weak isolation levels. The weakest isolation
level V that has the most anomalies demonstrates the
worst throughput, as well as a high average transaction
processing time. The reason behind this phenomenon is that
the RC+WC experiment issues much more transactions than
others; and even though the granularity of a transaction is
small, the costly coordination among multiple distributed
data copies is inevitable.

Unexpectedly, the isolation level VIII with the
ROC+WOC decomposition has almost the best
performance in all deployment scenarios. The isolation
levels VI and VII also demonstrate better performance
than the original serializable execution of transactions.
The reason is as follows. On the one hand, these
decompositions do not lead to a great increase of
transaction numbers as RC+WC does. On the other hand,
they relax the strictness of coordination by narrowing the
consensus scope and weakening the consensus requirement.

We do not plot the results for the ZipfianAccess case.
The ZipfianAccess case requires an extremely long time
for execution, e.g. 252178, 98853, and 124402 seconds for
isolation levels V, VIII and serializability respectively. The
durations are thousands of times of those in other cases.
Therefore, when there are lots of contentions as in the
ZipfianAccess case, even the weak isolation levels cannot
help. This is due to the distribution of the multiple data
replicas, the consistency of which requires many coordi-
nations and retries, thus impairing performance. Similar
results are also demonstrated in the average transaction
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isolation level III: RM vs. RC.
processing time. With ZipfianAccess, only read-any and
write-any transactions can help by guaranteeing only the
eventual consistency, although isolation VIII still has a better
performance than the others even under the ZipfianAccess
deployment.

For isolation levels III and IV, we compare the per-
formances of decompositions RM vs. RC, WM vs. WC,
and RM+WM vs. RC+WC. The experimental results are
shown from Figure 4 to Figure 9. Even under the same
isolation level, different implementations lead to different
performances. As shown in the figures, executing multiple
operations on the same shard in one transaction leads to
a much better performance than executing each operation
in a separate transaction. This fact indicates that, besides
decomposing a transaction, a client of highly available
datastores can also improve performance by issuing multiple
operations in one transaction.

Finally, we must point out that the benefit of con-
sensus reduction can outweigh the overhead in issuing
and coordinating multiple transactions, because the original
transactions can have long commit durations or high
abort rates due to conflicting transaction operations, while
the multiple decomposed transactions can be executed
concurrently and independently.

VI. RELATED WORK

To meet applications’ requirements on high availability,
eventual consistency was once widely adopted [12]. Later
proposals for guaranteeing causal consistency [22], [23]
and strong consistency [24], [25] emerge. As transaction
continues to be recognized as valuable [26], transactional
support was then implemented in highly available databas-
es [11], [9], [7], [8]. Transaction processing performance
can be improved by using weaker isolation levels [16], [21].
A later work generalizes classic isolation levels by using
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Figure 8. Average transaction latency under
isolation level IV: WM vs. WC.
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Figure 9. Average transaction latency under
isolation level V: RM+WM vs. RC+WC.
conflicting operation relations and transaction dependency
relations [18].

A recent work proposes the definition of highly available
transactions [27], which support weaker consistency. The
definition does not consider that a single accessible replica of
a data item might not reflect all operations on the data item
due to failures, and that the system cannot establish correct
database states when server nodes recover after failures [28].
The two aspects are key to high availability under failures.
A recent work [29] introduces a method to analyze whether
coordination is needed for applications of scalable databases.
In comparison, our work considers how the strictness of
coordination can be relaxed for performance improvement
when coordination is demanded.

Our way of decomposing a transaction into multiple tran-
sactions for execution leads to a similar execution structure
to that of nested transactions [30]. However, analyses on
nested transactions are mainly based on locking implemen-
tations, proposing no new isolation models. Besides, nested
transactions can have hierarchical structure, while, in our
proposal, transactions after consensus reduction consist of
flat transactions. The work on transaction chopping [31] also
breaks down a transaction into multiple smaller transactions
for execution. But it mainly considers conditions for the
serializability guarantee. It does not consider the high
availability requirement, thus not directly applicable to
transactions in highly available databases.

VII. CONCLUSION

In this paper, we propose to improve transaction pro-
cessing performance in highly available datastores through
consensus reduction. We answer three related questions: (1)
whether consensus reduction can help improve transaction
processing performance; (2) what isolation levels are formed
in consensus reduction; (3) how weaker isolation levels



improve performance. We draw three conclusions: (1)
consensus reduction can help improve transaction processing
performance; (2) eight new isolation levels are formed in
consensus reduction; (3) only isolation levels VI, VII and VI-
IT among the eight isolation levels can improve performance.
While isolation level VIII has the best performance under
varied deployment scenarios, the weakest isolation level V
has the worst performance.

Users can use an anomaly-set table like Table 1 in the
paper to check which anomaly sets their applications can
tolerate. As each anomaly set corresponds to an isolation
level, they can thus find out which isolation levels are
feasible for their applications. Among these isolation levels,
they can then choose the isolation level with the best
performance for their implementations.
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