
RECODS: Replica Consistency-On-Demand Store
Yuqing Zhu #1, Philip S. Yu ∗2, Jianmin Wang #3

#School of Software, Tsinghua University, Beijing 10084, China
1zhu-yq@mails.thu.edu.cn, 3jimwang@tsinghua.edu.cn

∗Department of Computer Science, University of Illinois at Chicago, Chicago IL 60607, USA
2psyu@uic.edu

Abstract—Replication is critical to the scalability, availability
and reliability of large-scale systems. The trade-off of replica
consistency vs. response latency has been widely understood
for large-scale stores with replication. The weak consistency
guaranteed by existing large-scale stores complicates application
development, while the strong consistency hurts application per-
formance. It is desirable that the best consistency be guaranteed
for a tolerable response latency, but none of existing large-
scale stores supports maximized replica consistency within a
given latency constraint. In this demonstration, we showcase
RECODS (REplica Consistency-On-Demand Store), a NoSQL
store implementation that can finely control the trade-off on an
operation basis and thus facilitate application development with
on-demand replica consistency. With RECODS, developers can
specify the tolerable latency for each read/write operation. Within
the specified latency constraint, a response will be returned and
the replica consistency be maximized. RECODS implementation
is based on Cassandra, an open source NoSQL store, but with
a different operation execution process, replication process and
in-memory storage hierarchy.

I. INTRODUCTION

The occurrence of NoSQL stores and cloud storage attracts
attentions from both industry and academia, as the inevitable
arrival of Big Data. Large-scale stores have been widely
employed in a wide range of online services over the past few
years. Web search, social networking and recommendation,
stock trading, webstore, and gaming represent a few prominent
examples of such services. Scalability, availability and reliabil-
ity are the three properties desired by these services. Most of
these services also require a deployment across multiple data
centers. The geographical distribution lends data reliability and
availability to these services. Replication is one key technique
to achieve these favorable properties.

As unavailable services easily drive away users, many large-
scale stores choose to guarantee only eventual consistency for
online service, e.g., Dynamo [1]. But the unknown consis-
tency status on eventual consistency also greatly complicates
application development. Thus some researchers pointed out
that, it is not fair that NoSQL stores guarantee only eventual
consistency [2], [3]. Multiple levels of consistency need to be
provided to cloud applications. Cloud applications need to be
provided with appropriate consistency for best performance
[4], [5]. It is most desirable that applications be guaranteed
the best consistency within their tolerable latency [6].

Among applications requiring strong consistency, some can
tolerate long writes, and some long reads. With RECODS, the
strong consistency can be guaranteed through either consistent

write or consistent read, i.e., write/read with infinite latency
bounds. Applications tolerating long writes can specify con-
sistent writes and fast reads, while those tolerating long reads
can specify fast writes and consistent reads. Applications not
caring consistency can specify their maximum tolerable laten-
cy, so that future operations can have a stronger possibility
to read a consistent values. Herein, application developers can
actively choose the desirable latency vs consistency trade-off
with RECODS.

Consider the following use cases of dynamic web pages.
Studies report that web users leave a website if the web
page does not display in three seconds. After subtracting all
the time required for foreground processing, the time left for
background data access becomes less than 100 milliseconds.
Due to the importance of the time limit, weaker consistency
and stale data become tolerable. With RECODS, developers
need only specify a latency bound with 100 milliseconds for
the related data access operation. This will guarantee that the
page be displayed before users become impatient and leave.
On uploading data, users are more patient to wait. Therefore,
the application can set a larger latency constraint such that
the uploaded data is written with consistency. Later, when
the uploaded data is requested for display, the read will take
shorter latency for a consistent value. In some cases, if the
consistency of some data is very important, e.g., recent posts
by close friends, the application can specify an infinite latency
bound to get a consistent value. Without RECODS, it is very
complicated to develop an application that meets the above
requirements.

In the remainder of this demonstration proposal, we first
sketch RECODS’ system design, focusing on the operation
execution process, the replication process and the storage
structures. Then, we proceed to describe our demo scenario.
We will demonstrate how RECODS can guarantee replica
consistency on demand through an Olympic medal chart
application.

II. RECODS DESIGN

RECODS consists of connected nodes with computing and
storage resources. Nodes are distributed over one or more
data centers. The system architecture is symmetric. Nodes and
replicas can be equally accessed. If an operation request arrives
at a receiving node without the corresponding data, this request
is forwarded to the closest node holding a replica. Operation
results are forwarded back to the receiving nodes and then
returned to the requester. The operation latency is computed



Fig. 1. RECODS’s staged replication in a multi-DC environment.

from the time the request arrives at the receiving node till the
time the receiving node responds to the requester. Figure 1
illustrates the above process.

There are three basic assumptions behind RECODS design.
First, network communication and disk access times take up
a major portion of the cross-node replication time. Second,
multiple-copy existence and disk storage are two important
measures for durability guarantee. Third, the execution of
multiple operations can also cause a long latency, especially
for read-test-write operations and compactions.

With the above assumptions, RECODS contributes in the
following aspects. RECODS breaks the replicated operation
execution process into six major stages (Figure 1) to allow
flexible consistency control. Stage is the basic unit to guarantee
durability and failure tolerance. The more stages are taken for
an operation, the better consistency is guaranteed. The stages
are further decomposed into minute steps, each of which is
related to limited processing time. The small granularity makes
latency prediction and bounding possible. Based on the latency
given by user, an operation execution process is constructed
by finding a subset of steps that meets the latency requirement
and maximizes replica consistency. To support the execution
process for on-demand consistency control, RECODS imple-
ments multi-level storage structures over Cassandra to enable
the control and to hold writes durably for each stage. In the
following, the RECODS design is briefly introduced. A more
detailed description of RECODS exists [7].
A. Operations with Latency Bound Specification

The key API mainly supports three read/write operations,
i.e. read, write, and readTestWrite. The readTestWrite opera-
tion cannot be easily implemented in NoSQL stores guaran-
teeing eventual consistency, but it is naturally supported by
RECODS. We assume the API operates over a flexible table
model similar to that of Cassandra [8] and BigTable [9].

The basic data unit for these operations is column, which
is referenced by table, row key, column family, and column.
Here the column may also contain a super column name (as
in Cassandra), if the column family is declared to be one
with super columns. Besides the reference to the data unit,
an operation must also be specified with the expected latency
bound tBound. The operation will return a response within
the latency tBound.

The write and readTestWrite operations can be specified
with an ordered parameter. If ordered is evaluated to true,
the operation is an in-order operation. In-order operations
are executed in the same arrival order with other in-order
operations. If ordered is false or not given, the operation has
a lower processing priority than in-order operations, so its
execution order is not guaranteed. The readTestWrite operation

must also be specified with two data units and three values.
If reading the first data unit returns a value equal to the first
given value, the second data unit is set to the second value;
otherwise, the second data unit is set to the third value. Note
that, the two data units must reside in the same row and column
family, i.e., the same tablet. In the following, we also refer to
a readTestWrite as a write.

Write Bound. Writes always get accepted and responded
in RECODS. If a write is specified with an infinite response
latency, all previous ordered writes on the same data unit are
guaranteed to be applied before this new write, leading to
a following instantaneous read returning a recent value. The
minimum processing latency for a write is the time RECODS
can guarantee the durability of the write, e.g., recording the
write in a node-local log or forwarding the write to an
adequate number of nodes. A response latency smaller than the
minimum processing latency would be ignored. A write with
an intermediate response latency will lead to partial processing
of this write and/or previously unprocessed writes. A larger
response latency leads to a more recent value for a following
instantaneous read, or a shorter processing latency for a
following consistent read with an infinite latency specification.

Read Bound. A read is guaranteed to be forwarded to its
corresponding replica in RECODS. If a read is specified with
an infinite response latency, all previous ordered writes on
the same data unit are guaranteed to be applied before this
new read. That is, the read returns the most recent value by
ordered writes. The minimum processing latency for a read is
the time that the receiving replica processes the read locally. If
there are previous unexecuted writes on the corresponding data
unit, RECODS returns NULL for the read, if given a response
latency smaller than or equal to the minimum processing
latency; otherwise, RECODS returns what the replica reads
locally. A read with an intermediate response latency will lead
to partial processing of previously unexecuted writes before
processing the read. A larger response latency leads to a more
recent value returned by the read.

B. Staged Replication Process

There are six stages, including reception, transmission,
coordination, execution, compaction and acquisition. In the
reception stage, writes are received by one of the replica node.
Writes are transmitted to all other replicas in the transmission
stage. Since a write can be submitted to any replica, writes
must go through a coordination stage before execution. In
this way, all replicas are guaranteed to execute the same
write sequence in the execution stage, thus avoiding conflict
resolution. The processing of a write can also go through the
compaction stage that compacts previously appended results of
write executions. The compaction stage is not directly related
to replica consistency, but this stage helps to speed up the
acquisition stage for a later read.

RECODS replication strategy allows update-anywhere, ea-
ger synchronous and lazy asynchronous replication simulta-
neously. Figure 2 demonstrates the RECODS replica control
process for a write. The processing flow of a write can



contain at most five stages, though it must always contain the
reception stage. A consistent write with eager replication goes
through all the five processing stages. The response latency
is bounded by processing the maximum number of stages
possible within the time bound. Taking fewer stages leads to a
less consistent write with lazy asynchronous replication. Read
request processing can also contain at most five stages (except
for the reception stage). The acquisition stage is required
for the read processing to return the requested value. The
other four stages handle writes previously received but not
yet processed. Though only the acquisition stage actually
processes the read request for the result, the first four stages
can lead to a more consistent result returned by the read. With
the best consistency status, a consistent read needs only to
process the acquisition stage.

RECODS orders a chosen set of stages as in Figure 2.
Though the processing can actually take the stages in any
order, the order in Figure 2 guarantees the output from the
previous stage is taken as input by later stages. For example,
the reception stage always precedes the other stages in the
processing; and the coordination stage always follows the
transmission stage. Notice that, a response can be returned to
the requester at the end of any stage. Writes for transmission
and coordination stages are logged before response. The
logging is for the purpose of durability and failure tolerance.
A new write can be processed whenever the preceding request
is responded. The better the consistency status is, the fewer the
unexecuted writes are left. In other words, the fewer stages and
writes a consistent read needs to process, indicating a faster
response. On the other hand, the better the consistency status
is, the fewer writes are left unprocessed; thus, the more recent
value can be returned by a read within the same latency bound.

C. Stepwise Bounding of Latency

In order to bound latency, the processing time needs to be
predicted. RECODS borrows the idea from Riemann integral
in latency prediction. It decomposes stages further into minute
steps, which costs no more than millisecond processing time.
The step processing time is then approximated and predicted
by linear functions. Statistics are collected on the processing
of each step to enable approximation. RECODS computes the
step subset for execution based on the latency estimation and
the stage boundary. The stage boundary must be complied for
the sake of durability and failure tolerance. Besides that the
steps for read/write processing can be flexibly decided, the
number of writes to be processed can be decided individually
for each step. The longer latency is specified, the more steps
and the more writes can be chosen; and vice versa. Thus,
RECODS not only computes the step subset for each operation
execution process, but also the corresponding set of writes.
RECODS computes the path after receiving the operation and
before processing it.

As the selection and processing of stages are in the order
specified in Figure 2, we can observe that the more stages
means the more executable or executed writes. Executing more
writes, or producing more executable writes, increases the

write
Ordered 

Buffering List

read

Disordered 

Buffering List

Temporary

List

Pending

List

Sorted CF 

Map

Pending

List

File

Buffering

List

File

Sorted,

Indexed

CF File

Sorted,

Indexed

CF File

Batch

Log

File

Fig. 2. RECODS’s staged processing flow for a write and the supporting
storage structures on one node. Stages are ordered by the numbers. Response
is allowed at the end of any stage.

probability that a following read returns a consistent value. The
only way to increase this probability is to decrease the number
of unexecuted writes, and shorten the time for keeping unexe-
cuted writes for the most consistent replica. Summarizing the
above analysis, we have the following principles for the step
and the write subset computation: (1) the path either covers or
bypasses a stage to guarantee durability and failure tolerance;
(2) the step subset is maximized and its execution time is
within the given bound; (3) the set of writes processed within a
step is maximized; (4) the path for a write covers the reception
stage, and that for a read the acquisition stage. To directly
improve replica consistency status, the numbers of executed
and executable writes are maximized first, thus the maximum
number of writes to be executed is computed from stage
execution, coordination, transmission, to stage compaction.

D. Storage Structures

Figure 2 demonstrates RECODS’ multi-level storage struc-
tures. Batch Log File(bl-file) for the reception stage stores
writes in disk. The order to execute writes in bl-file is
not guaranteed. bl-file enables RECODS to receive writes
even under network partition, guaranteeing availability. After
network partition is fixed, writes in bl-file are sent to other
replicas, following the write execution process in normal cases,
except that these writes are not guaranteed with execution
order. That is, the ordered parameter is set to false for writes
received under network partition.

Without network partition, the received writes can be trans-
mitted to all reachable replicas in the transmission stage.
Before transmission, writes requiring to be executed in order
are stored in Ordered Buffering List (ob-list), while those not
requiring order are in Disordered Buffering List (db-list). The
ordered parameter signifies whether a write is an ordered
one or a disordered one. The ob-list and db-list constitute
the Buffering List (b-list). Thresholds can be set for b-list.
If the thresholds are reached, newly received ordered writes
are logged in the Buffering List File (b-file), while disordered
writes are appended to the bl-file. When there are not enough
writes for coordination in b-list, writes in b-file are first
retrieved and then those in bl-file.

The coordination stage exploits Temporary List (t-list)
to temporarily store writes under coordination. Coordinated
writes are stored in Pending List (p-list), pending for execution.
If not all replicating nodes participate in the coordination
stage, the coordinated writes are also logged in the Pending



Fig. 3. Olympic Medal Counts Displayed with Different Latency Specifications.

List File (p-file). Temporarily unavailable nodes can later
request the file for a catch-up.

In the execution stage, an executed write updates one or
more columns of the corresponding row in a certain column
family. The updated column values are stored in its Sorted
Column Family Map (cfMap). Usually coordinated writes in
p-list are executed immediately since the execution takes a
relatively short time and directly improves consistency status.

Either when the compaction stage is initiated or a cfMap
reaches its size threshold, a cfMap is flushed out as a Sorted,
Indexed Column Family File (cfFile). There may be more than
two cfFiles for one column family simultaneously if a large
number of writes pour in. The cfFiles can overlap in row
keys. A cfFile compaction, similar to the leveled compaction
of Cassandra, is initiated when the number of cfFiles reaches
the configured limit, or when a compaction stage is initiated
actively. Actively initiating compaction at spare time can
effectively avoid the sudden surge of resource consumption
and the huge performance degradation [10] due to the passive
large-scale compaction.

In the acquisition stage, read requests are first directed to
the cfMap, and then the cfFiles. The cfMap is sorted by row
key, and the cfFiles are indexed to fasten the reading process.

The execution process can thus be summarized as follows.
A replica puts a newly received write in the b-list and send
it if given a tight latency bound; or, the replica returns the
accessible value on read. Given enough time, the replica can
execute coordinated writes in p-list, compact the executed
writes, request the leader for a write sequence coordination
process, or transmit disordered writes in bl-file. A replica
with spare resources, e.g., CPU cycles, network bandwidth
and memory, can similarly take some or all of the stages to
actively improve its consistency status for future requests.

III. DEMO SCENARIO

We will demonstrate RECODS through the Olympic medal
chart scenario. Note that the demonstrated Olympic medal
chart scenario will have exceptionally frequent and concurrent
read/write requests arriving at multiple nodes in RECODS.
Three computers or laptops will be set up for the demon-
stration. One displays in realtime the throughput, latency, and
read/write ratio information of data accesses in the backend
RECODS. The other two displays the application web pages

as a comparison of different access patterns. Figure 3 demon-
strates the two web page interfaces users will see. A user can
first select a country as his/her focused country. The read and
write latencies can thus be specially set for this country to
guarantee an up-to-date record in the medal chart. A default
read/write latency can be set for other countries’ records.
This default latency is usually small so that the records get
displayed quickly, since the user is less concerned whether
these records are up-to-date or not. In the demo, to check the
consistency with regard to latency, we will demonstrate that
the larger the read latency bound is, the more recent value the
read returns. The web page on the left of Figure 3 has China
as the focused country while USA is set on the right web page.
Records for the two countries are up-to-date respectively on
the corresponding web pages. The default latency for the left
web page is larger than that on the right, thus records for other
countries on the left are more up-to-date than those on the
right. Participants to the conference will be invited to set the
read/write latencies for the web pages reporting the Olympic
medal counts. REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Operating Systems
Review, vol. 41, no. 6, pp. 205–220, 2007.

[2] E. Brewer, “Pushing the cap: Strategies for consistency and availability,”
Computer, vol. 45, no. 2, pp. 23 –29, feb. 2012.

[3] R. Ramakrishnan, “Cap and cloud data management,” Computer, vol. 45,
pp. 43–49, 2012.

[4] M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou, “The researcher’s
guide to the data deluge: Querying a scientific database in just a few
seconds.” PVLDB, vol. 4, no. 12, pp. 1474–1477, 2011.

[5] D. Florescu and D. Kossmann, “Rethinking cost and performance of
database systems,” SIGMOD Record, vol. 38, no. 1, pp. 43–48, 2009.

[6] T. Hoff, “10 ebay secrets for planet wide scaling,” Novem-
ber 2009, http://highscalability.com/blog/2009/11/17/10-ebay-secrets-
for-planet-wide-scaling.html.

[7] Y. Zhu, P. S. Yu, and J. Wang, “Latency bounding by trading off
consistency in nosql store: A staging and stepwise approach,” 2012,
http://arxiv.org/abs/1212.1046.

[8] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
Apr. 2010.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed
storage system for structured data,” in Proceedings of OSDI 2006.
Berkeley, CA, USA: USENIX Association, pp. 15–15.

[10] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. Lopez, G. Gibson,
and A. Fuchs, “Ycsb++: Benchmarking and performance debugging
advanced features in scalable table stores,” in Proceedings of SoCC
2011. New York, NY, USA: ACM, 2011.


