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Abstract—Guaranteeing transaction semantics in a highly
available and fault tolerant manner is desirable to application
developers. Besides, it is a very valuable feature for database-
backed applications. In this paper, we propose SHAFT to
support transactions with serializability in highly-available
datastores, which partition, distribute and replicate data
across datacenters. SHAFT is a transactional replication
protocol guaranteeing Serializability, High Availability and
Fault Tolerance simultaneously for transactions. Laying its
basis on the Paxos algorithm, SHAFT guarantees serializability
by a two-phase locking procedure in a fault-tolerant manner.
Different from other transactional replication protocols like
MDCC, SHAFT allows a client to actively abort a transaction.
SHAFT also allows flexible data partition, replication and
distribution, a proper combination of which can reduce costs
and improve performance. SHAFT performs well even under
failures. Our experiments show that SHAFT outperforms
MDCC, which outperforms other synchronous transactional
replication protocols, e.g. Megastore.

Keywords-concurrency control; transaction; high availabili-
ty; consistency; isolation;

I. INTRODUCTION

High availability and fault-tolerance are two important
properties of large-scale systems. Nodes of a system can fail;
even an entire datacenter can become unavailable as well.
For example, in June 2012, Amazons Elastic Compute Cloud
in North Virginia went down due to thunder storms [1].
Similar outages have also been reported in large-scale
storage systems by Google, Facebook, etc. In many of
these events, failures have resulted in data losses. Besides,
even if a system can recover and restart from failures
and losses, the downtime when the system recovers can
cause great economic losses [2], [3]. Therefore, applications
are widely deployed over highly-available datastores that
partition, distribute and replicate data across datacenters.

Transaction support is a very valuable feature for
database-backed applications. Consistency was once
relaxed to improve availability and fault-tolerance in
highly-available datastores, as consistency, availability and
network partition tolerance are in a trade-off relation [4].
However, the lack of strong consistency semantics, e.g.
transactional support, leads to great difficulty of application
development [5]. In recent years, there are increasing
attentions to transactional support in highly-available
datastores. Besides, the strong transactional support with
serializability is much desired by applications [6].

There are three fundamental measures, i.e. data partition,
distribution and replication, that are key to guarantee
availability, scalability and fault tolerance in storage systems.
But these measures increase the difficulties of supporting
transactions. While various methods are proposed to support
transactions exploiting the three measures, fault-tolerant
approaches proposed recently usually base on the Paxos
algorithm [7]. Paxos is the most widely known protocol
in guaranteeing high availability and fault-tolerance based
on replication, while two phase commit (2PC) is the
most accepted protocol for distributed transaction commit,
and two phase locking (2PL) is the most widely used
technique to guarantee serializability. Paxos, 2PC and 2PL
are exploited in various proposals [8], [9], [10], [11],
[12]. Among these proposals, few supports transaction and
replication over partitioned and distributed data can guar-
antee high availability, fault-tolerance, and serializability
simultaneously.

In fact, transactions over replicated data are inherently
different from those operating non-replicated data, even both
are distributed transactions. With replication, we might treat
each replica as a different shard and run 2PC as if in
a distributed database without replication. However, fault-
tolerance and availability will be impaired, as 2PC is a
blocking protocol. Furthermore, 2PC mainly focuses on
whether a participating node can commit or not. The actual
execution order at each node is disregarded, thus different
replicas can have different execution orders for transactional
operations on the same data item. That is, there would be
conflicting replicas problem even if every node votes commit
in 2PC. From the aspect of correctness, the consensus on
replica state change has a higher priority than the commit
consensus of transactions. Not only commit consensus is
important, so is commit ordering.

In this paper, we address the problem of supporting
transactions with serializability, high availability, and fault
tolerance guarantees simultaneously. To achieve high avail-
ability and fault tolerance, we exploit the Paxos algorithm
as the basis as well. However, we incarnate the roles of the
Paxos algorithm differently from other proposals, including
the leader election and the configuration determination.
We also update the operation semantics of the Paxos
algorithm, such that a Paxos-based distributed two phase
locking and commit procedure is implemented to guarantee



serializability. The updated operation semantics include
consensus and majority. SHAFT allows a client to actively
abort its submitted transaction by using two Paxos instances.
The SHAFT proposal can be implemented in any system that
partitions, distributes and replicates data in a large scale.
Even if the partition, the distribution and the replication is
not uniform, e.g. no full replica in a datacenter or datacenters
with different partition sets, our proposal is also feasible. In
this paper, we make the following contributions:

• An integrated transactional support approach, which
guarantees serializability, high availability and fault
tolerance simultaneously for transactions in highly-
available datastores.

• A new fault-tolerant approach to implementing strict
two-phase locking in the distributed environment.

• Performance results from extensive experiments show-
ing that SHAFT guarantees stronger consistency with
a higher concurrency and a cost similar to other
transactional replication protocol.

In the following, Section II relates SHAFT to existent
works. Section III describes SHAFT’s new concurrency
control protocol. Section IV illustrates the evaluation of
SHAFT. Section V concludes the paper.

II. RELATED WORK

Transactional support for distributed storage systems can
be divided into three categories. The first category considers
data partition but no replication. G-store [13] provides on-
demand transactional access over partitioned data through
group communication protocol. However, replication is left
to the underlying storage’s consideration and not considered
in the implementation.

The second category considers a whole replication of
database, but no partition. Walter [14] supports parallel
snapshot isolation (PSI), precluding write-write conflicts
of concurrent transactions by timestamps at different sites,
each of which is a complete copy of the whole database.
But its dependence on precise timestamps is impractical
as time coordination can hardly be implemented with
precision in large-scale systems. Megastore [8] supports
serial transaction execution within each entity group, ex-
ploiting Paxos algorithm for fault-tolerance. Each entity
group acts as an individual database in effect. Paxos-
CP [12] is another improvement of Megastore. It supports
serializable schedules of transactions through combination
and promotion enhancements.

The third category considers both replication and par-
tition. Spanner [9] extends Megastore. While two phase
locking and Paxos algorithm are exploited within a shard
and their replicas, a global transaction commit layer with
True Time support guarantees the snapshot isolation of
transactions, as well as external consistency. Calvin [15]
implements a middle layer for replication and transaction

scheduling functions. Its transaction scheduling is serial-
izable and deterministic over strongly consistent replicas.
Eiger [16] enables causal consistency by adding dependency
metadata to each write. These dependencies are checked
before applying any write. Unsatisfying a dependency check
causes a write to block till all writes it depending on have
been applied. But fault-tolerant algorithms are only proposed
for read-only and write-only transactions based on the causal
replica consistency.

Recent transactional proposals target at high availability
and fall into the third category. MDCC [11] supports
transactions across multiple data partitions with replication
based on Paxos algorithm, but it guarantees only the
isolation level of read committed without lost update.
Besides, applications cannot abort a transaction after it
starts, unless the master of any data partition requests an
abort. Replicated commit [10] layers replication over the
distributed transaction support. It is blocking in data center
with any failure as it exploits the blocking two-phase commit
under fault-tolerant replication. There is also a recent
work [17] on providing stronger consistency by implement-
ing a middle layer over eventually consistent datastores
such that availability and relatively stronger consistency
are simultaneously guaranteed. However, transaction-level
consistency is not provided.

In comparison to other transactional proposals for highly-
available datastores that guarantee only weak consistency
levels, SHAFT can guarantee the strong consistency of
serializability even on failures. Moreover, while other Paxos-
based protocols only deal with replication or commitment,
SHAFT is a complete protocol integrating the replication,
concurrency control and commitment procedures for tran-
sactions over partitioned, distributed and replicated data.

III. THE SHAFT PROTOCOL

SHAFT exploits Paxos as the basis. Each transaction
corresponds to two Paxos instances, i.e. the processing
instance and the decision instance. The processing instance
is for operation processing and concurrency control in
the transaction, while the decision instance supports users’
request of abort after initiating a transaction. If the user
never aborts a transaction after initiation, SHAFT requires
only the processing Paxos instance. Transactions can be
uniquely identified by their IDs, which can be distributively
generated by hashing functions. Thus, the Paxos instances
of a transaction can be uniquely identified as well.

A. Preliminary: Basic Paxos Algorithm

Paxos algorithm is for reaching a single consensus among
a set of acceptors. A run of the Paxos algorithm is called an
instance. Each instance can only reach a single consensus,
disregard of failures. Three roles exist in the algorithm. They
are a proposer, acceptors, and learners. The proposer is also



called the leader. With 2F + 1 acceptors, an instance can
tolerate F failures [7].

Paxos algorithm can be employed for different scenarios
requiring a distributed consensus through different incarna-
tions, e.g. replication [18], coordination service [19] and
transaction commit [20]. Although the four roles can be
flexibly appointed in an incarnation, there is an important
requirement to be satisfied in any incarnation. The set of
acceptors and that of learners, which together are called a
configuration, for an instance stay unchanged and known to
any leader until a consensus is reached, even though some
acceptors or learners can fail in the process.

Procedure. Each Paxos instance has three phases. Phase
1 and phase 2 have two sub-phases a and b respectively.
A leader initiates a Paxos instance on receiving a proposal
from the proposer. The initiator, being certain of its first
and unique leadership in the instance, can proceed to send a
phase 2a message directly; otherwise, the leader starts from
phase 1a. In phase 1a, the leader chooses a ballot number
bal that it believes to be larger than any ballot number seen
in the instance. The leader sends a phase 1a message with
bal to every acceptor. Phase 1b follows.

In Phase 1b, on receiving the phase 1a message for bal, if
an acceptor has not yet performed any action for messages
with a ballot number bal or higher, it responds with a phase
1b message consisting of the largest ballot number that it
has ever seen, the largest ballot number that it has sent a
phase 2b message with, and the accepted consensus in the
corresponding phase 2b message. The acceptor ignores the
phase 1a message if it has performed an action for a ballot
numbered bal or greater.

Then in phase 2a, if the leader has received a phase 1b
message with bal from a majority of the acceptors, it can
choose the consensus value for this instance based on the
following logic. If none of the majority of acceptors reports
accepting any consensus before, the leader decides the
consensus value, but usually picks the first value proposed
by the proposer. Otherwise, let µ be the maximum ballot
number of all the reported phase 2b messages, and let Mµ
be the set of all those phase 2b messages that have ballot
number µ . All the messages in Mµ have the same consensus
v, which might already have been chosen. The leader has to
set the consensus to v. Finally, the leader sends a phase 2a
message with the consensus and bal to every acceptor. Phase
2b comes next.

In phase 2b, when an acceptor receives a phase 2a
message for a consensus v and bal, if it has not seen a larger
ballot number, it accepts v as the consensus, and sends a
phase 2b message for v and bal to the leader. The acceptor
ignores the message if it has already seen a higher ballot
number. The following phase 3 ends the process.

In phase 3, when the leader has received phase 2b
messages for v and bal from a majority of the acceptors,
it knows that v has been accepted as the consensus and
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Figure 1. Typical sequence of messages and operations when using
SHAFT. Steps 2⃝ and 3⃝ are needed only when transaction leader failures
happen.

communicates that fact to all interested processes, usually
learners and the proposer, with a phase 3 message. In most
cases, acceptors also take the learn roles, thus phase 3 is
generally not needed.

B. The Processing Instance

Figure 1 illustrates the typical sequence of messages and
operations when using SHAFT. The main part of the SHAFT
protocol is the processing Paxos instance, which defines
the major processing flow. In each processing instance, the
client that submits a transaction takes the proposer role.
All replicas of all shards accessed by a transaction takes
the roles of acceptor and learner. Among all acceptors and
learners, one of them is chosen as the leader. The choice
of leader is through some predefined rule as illustrated in
the following leader election part. With the predefined rule,
even the client can find out the leader of a transaction. As
long as the leader is alive, the leader is unique throughout
a transaction. In sum, the configuration is static and known
to the leader throughout the processing instance.

Leader election. On submission of a transaction, the
client first collects all shards accessed by the transaction.
An access can be a read or a write. Among all shards,
there exists a shard s with the least ID. The client chooses
the system node with the least ID among all nodes hosting
replicas of s. This chosen system node becomes the leader
in the processing instance.

A client submits the transaction to the chosen leader,
which starts the processing instance. The leader thus enters
phase 1a. The transaction information is included in the
phase 1a message sent by the leader. Receiving a phase 1a
message, an acceptor locks the current position of its log
and enters phase 1b. If the current log position is already
locked by other transactions, the acceptor adds a reject vote
in its phase 1b message; otherwise, the current log position
and an accept vote are included.

A different consensus. Note the changes as to the basic
Paxos algorithm here. The consensus of the processing
instance is whether to commit the transaction at the
current position of each replica’s log. Here, current position
is interpreted into different numbers by different shards.



Thus, when incarnating the Paxos algorithm into the
processing instance, the message sent in each phase changes.
The replicas also need to process transactional operations
accordingly.

In phase 2a, the leader waits until all acceptors respond
or it times out. Then it proceeds to check if the majority
condition is satisfied. If the majority condition is not
satisfied, the leader sends out a phase 2a message with the
abort consensus; otherwise, the leader adds the log positions
voted by the majority and the commit consensus to its phase
2a message.

A different majority. Another change in the incarnation
of the Paxos algorithm is the interpretation of majority. The
majority condition now represents the following conditions:
(1) there are a quorum of replicas voting for each shard
involved in the transaction; (2) for each shard, a quorum
of replicas vote the same position with the same accept or
reject decisions.

On receiving a phase 2a message with the commit deci-
sion, an acceptor reads values requested by the transaction
and sends a phase 2b message with the read values, the
log position and the commit consensus. If the phase 2a
message indicates to abort, the acceptor releases its lock
to the current log position and replies to the leader with a
phase 2b message indicating the abort.

The leader again waits until receiving all acceptors’ phase
2b messages or it times out in phase 3. Then, it proceeds
to check if there are a majority (or quorum) of replicas
voting for each shard involved in the transaction. If so, it
executes the transaction logic, and decides the transaction
outcome by checking the majority votes for each shard.
If all majority votes of all shards are to commit, then the
transaction outcome is commit; otherwise, abort. A phase 3
message is sent out accordingly.

If an acceptor receives a phase 3 message with commit
decision, it applies all writes and releases the lock of the
current position. On an abort decision, the acceptor just
releases the lock.

C. The Decision Instance

SHAFT supports the active transaction abort by client.
This is achieved by using a decision instance. In compar-
ison, transactional replication protocols like MDCC cannot
support the same function. The decision instance can survive
the user decision of the transaction outcome over leader
failures. On leader recovery, the new leader can always reach
consistent transaction decisions by restarting the processing
and the decision Paxos instances.

As demonstrated in Figure 1, the decision instance is
activated before phase 3. The decision instance follows the
basic Paxos algorithm process with the transaction decision
as the consensus value. Its leader is still the leader of
the processing instance. The acceptors and the learners are
different. Only replicas of the leader shard are the acceptors.

The learners are those to recover a transaction. The acceptors
of the decision instance store the accepted value next to that
of the processing instance. Note that, the decision instance
does not need a phase 3. After the leader collects a majority
of phase 2b messages in the decision instance, it sends out
the phase 3 message of the processing instance.

D. Fault Tolerance

The leader failure of a transaction’s processing instance
can be detected by other concurrent transactions accessing
an intersecting data shards. When a transaction T1 accesses
a shard locked by another transaction T0, T1 can locate the
leader replica of T0 and probe to see if the hosting node is
alive. If a leader failure is detected, the leader of T1 can
act for T0’s leader to drive T0 to finish. As there might
be multiple transactions trying to act for T0’s leader, there
can be multiple leaders competing in T0’s processing and
decision instances. The non-uniqueness of leaders in a Paxos
instance can impair its liveness property. Therefore, we
exploit random backoff techniques in such failure recoveries.
That is, a substitute leader will randomly wait for sometime
after it detects competition and before it restarts another
round of recovery.

If a decision has already been decided by the last leader,
the decision must have been accepted by the decision
instance. The new leader will get to know the chosen
decision after re-running the decision instance. Then the
new leader must make the same decision as indicated by
the consensus of the decision instance. Otherwise, the new
leader can choose a transaction outcome freely.

E. Serializability – DS2PL

At present, SHAFT guarantees the serial processing of
transactions. It locks all shards to read or write before pro-
cessing the transaction. The locking forbids any concurrent
operations by other transactions on the same shards. That
is, the locks are exclusive. Besides all locks are not released
until the transaction commits. The locking of SHAFT is in
fact strong strict two-phase locking (SS2PL) [21]. No other
transactions can be concurrently processed over any of the
shards that a transaction accesses.

To increase concurrency, we can relax the locking
procedure. We have a transaction release its locks on all
shards that the transaction only reads and not write, once
all read values are returned, i.e. immediately after sending
the phase 2b message. This turns SHAFT’s locking into the
strict two-phase locking (S2PL). The expanding phase of
S2PL ends immediately after an acceptor sends the phase
2b message. This is also when the shrinking phase of S2PL
starts. All locks on shards to be written are not released
until the transaction commits. As SHAFT is a distributed
protocol, we call the locking of SHAFT as distributed strict
two-phase locking (DS2PL).



SS2PL, S2PL, and thus DS2PL are all proper subclasses
of the two-phase locking (2PL). It is proved and well known
that 2PL can guarantee serializability [22]. Notice that,
replicas of the same shard never evaluate to different states
before applying a transaction’s writes. Although failures
can lead to the divergence of replica states, the recovered
replicas can catch up by copying and processing virtual logs
from the correct replicas, as illustrated by Megastore [8].
That is, SHAFT guarantees single-copy transaction histories.
We can thus accordingly deduce that SHAFT guarantees
serializability.

In fact, some processes in SHAFT can be further
improved. For example, read transactions can lock no data
to fasten the process, while they are guaranteed at lest the
read-committed isolation level; or, transaction instances can
merged as done in PaxosCP [12] to reduce communications;
or, schemes for data distribution, replication and partition
can be adjusted to suit the workloads and improve access
latency [23]. The pseudocode of SHAFT can be found in
our technical report [24].

IV. EVALUATION

We evaluate SHAFT and compare it to the transactional
replication protocol MDCC based on extensive experiments.
We choose MDCC because it is fault-tolerant and outper-
forms a few widely known counterparts. Except for results
reported in this section, we also summarize our observations
on the usage of transactions in highly-available datastores.
The observations can be found in our technical report [24].

A. Experimental Setup

We implement not only the protocols of SHAFT and
MDCC, but also various experimental conditions of the
underlying system for thorough test. For example, we
implement conditions on how nodes connect to each other,
how messages are sent to and arrive at each node, how
workloads are applied to the system, etc. By such, we
test system under different workloads in multi-datacenter
scenarios. Furthermore, we test to find out how a system is
influenced by different failures. To enable a fair comparison,
the same workloads and the same failure conditions are
applied to both protocols, while the two protocols run
independently with results collected separately.

In the evaluation, we experiment with a multi-datacenter
scenario. The number of datacenters is set to three or five in
different experiments. The communication latencies between
datacenters are randomly chosen from 20 to 200 times of
the intra-datacenter round-trip time, which we denote as
one unit of time in the experiments. We set the number of
nodes in each datacenter to 50. Data shards are distributed
to nodes. With regard to data distribution, we consider three
cases: (1) replicas are placed across datacenters randomly by
uniform distribution; (2) a majority of replicas are placed in
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Figure 2. The percentage of committed transactions as workloads increase.
SHAFT outperforms MDCC as workloads increase.

a datacenter closest to the transaction clients; (3) a complete
copy of data shards is placed at each datacenter.

We generate transactions for different workloads. Tran-
sactions randomly access data shards, following either
the uniform distribution or the Zipfian distribution. The
percentage of cross-shard transactions is set to 20%. The
number of shards accessed by a transaction is randomly
chosen from less than 10. The number of operations
in a transaction is randomly chosen from less than 50,
but which is no smaller than the number of shards. To
generate read-only transactions, we set 80% operations of
all transactions to be reads and the others writes; but for
a single transaction, the percentage varies randomly. Each
operation processing, e.g. read or write, takes as long as
sending an intra-datacenter message. We carry out three
groups of experiments. The metrics that we concerns are
the throughput rate in percentage and the response time in
time units.

B. Workload Influence

We first evaluate the concurrency level. Different work-
load levels are considered, varying from 1 unit to 100 units
of workloads. One workload unit is one transaction per
hundred units of time, and 100 workload units means one
transaction per unit of time. We randomly choose among all
nodes to initiate a transaction.

SHAFT and MDCC have similar performance when the
workload is low. As the workload increases, SHAFT outper-
forms MDCC. The reason is that SHAFT is a pessimistic
concurrency control protocol and MDCC is an optimistic.
High concurrency can lead to high abort rates of transactions
using MDCC. On the other hand, the throughput of read-
only transactions will keep at a high level using MDCC,
although the read-only transactions can return values belong
to different versions. As SHAFT guarantees serializability,
read-only transactions always return consistent values. The
throughput of read-only transactions will drop as the
workload increases using SHAFT.

Figure 2 shows the throughputs of all committed tran-
sactions and committed write transactions for SHAFT and
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Figure 3. Response times as workloads increase. 75% transaction response
times of SHAFT are comparable to those of MDCC, although SHAFT has
a longer tail in response times.

MDCC as the workloads increase. The throughputs of both
SHAFT and MDCC drop as workloads increase. MDCC’s
throughputs of committed write transactions drop fiercely
as workloads increase. The reason is due to concurrent
data access by transactions with intersecting data sets.
More and more write transactions are aborted as workloads
increase when using MDCC. SHAFT outperforms MDCC in
throughputs of both committed transactions and committed
write transactions, as workloads increase. Since MDCC
guarantees only a low isolation level for read-only transac-
tions, the throughput of committed read-only transactions
is not influenced by the increasing workloads in MDCC.
SHAFT guarantees serializability for all transactions, thus its
throughput of committed read-only transactions is affected
by the increasing workloads.

Figure 3 shows the boxplots of the responses times
of committed transactions for SHAFT and MDCC. 75%
transaction response times of SHAFT are comparable to
those of MDCC, although SHAFT has a longer tail in
response times. However, taking a closer look and observing
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Figure 4. Response times of write transactions as workloads increase.
The actual processing times of committed write transactions using SHAFT
(SHAFT-APT) is very close to those of MDCC. The long tail of response
times when using SHAFT is due to the waiting of locks.
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Figure 5. The percentage of committed transactions on different
data distribution and access patterns. (a) SHAFT outperforms MDCC in
throughputs of all scenarios except for ZipfianAccess; (b) SHAFT has
a higher throughput of committed write transactions (SHAFT-wrtie vs.
MDCC-write) under ZipfianAccess; (c) Whether a quorum of replicas are
placed in the same datacenter, whether datacenters have complete copies
of data, and the number of replicas when each datacenter has a full replica
do not have impact on the throughput of SHAFT, but MDCC has higher
throughputs of committed write transactions when datacenters have full
replicas.

Figure 4, we can see that the actual processing times of
committed write transactions using SHAFT (SHAFT-APT)
is very close to those of MDCC. The long tail of response
times when using SHAFT is due to the waiting of locks.

C. Data Distribution and Access Patterns

In actual deployments, data can be distributed to datacen-
ters according to the application patterns. In the following,
we study how data distribution and access patterns can
influence the throughputs and response times of transactions.
We apply 20 units of workloads in all scenarios for this
subsection. We study five scenarios including placing a
quorum of replicas in one datacenter (QuorumInOneDc),
uniformly distributing data to nodes accross datacenters
(DHT), placing a complete copy of data in each of the
three datacenters (3DcWholeRep), placing a complete copy
of data in each of the five datacenters (5DcWholeRep),
and accessing data following Zipfian distribution under
QuorumInOneDc condition (ZipfianAccess).

Figure 5 shows the throughputs of transactions on
different data distribution and access patterns. We can easily
observe that SHAFT outperforms MDCC in throughput in
all scenarios except for ZipfianAccess. Under the Zipfian
access pattern, SHAFT has a higher throughput of commit-
ted write transactions than MDCC. The reason is that many
concurrent transactions accessing intersecting data sets have
to be aborted in MDCC.

On the one hand, Zipfian access pattern greatly impacts
the resulting throughput and concurrency. On the other
hand, whether a quorum of replicas are placed in the same
datacenter, whether datacenters have complete copies of
data, and the number of replicas when datacenters have
complete data copies do not have impact on the throughput
of SHAFT, but MDCC has higher throughputs of committed
write transactions when datacenters have complete data
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Figure 6. Response times on different data distribution and access
patterns. (a) Write transactions take longer time to response than read-only
transactions (-All vs. -Write); (b) Zipfian access pattern (ZipfianAccess)
has a great impact on response times of SHAFT; (c) Whether a quorum
of replicas is in one datacenter (QuorumInOneDc vs. DHT) does not
lead to obvious differences in response times; (d) Complete copies in
datacenters (3DcWholeRep & 5DcWholeRep) lead to monotonous response
times; (e) Cross-datacenter communication latency has greater impacts on
response times than the number of copies, when placing complete copies
in datacenters (3DcWholeRep vs. 5DcWholeRep).

copies. The reason for MDCC’s higher throughputs on
complete data copies in datacenters is smaller abort rates
and fewer competing transactions. In such scenarios, the
workload generator tends to generate fewer transactions with
intersecting data sets.

Figure 6 demonstrates the transaction response times on
different data distribution and access patterns. We can easily
observer that write transactions take longer time to response
than read-only transactions. While Zipfian access pattern
has greater impact on MDCC’s throughput of committed
write transactions, it has a great impact on response times of
SHAFT. Whether a quorum of replicas is in one datacenter
does not lead to obvious differences in response times, but
complete copies in datacenters lead to a different distribution
of response times. In fact, complete copies in datacenters
lead to monotonous response times. Observing closely, we
can see that cross-datacenter communication latency has
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Figure 7. The percentage of committed transactions on failures. Failures
have little influence on the throughputs of SHAFT, but have great impacts
on MDCC’s throughput of committed write transactions.
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Figure 8. Response times on failures. The response times of SHAFT
increase on failures as compared to the normal case, while the response
times of MDCC’s committed transactions remain stable.

greater impacts on response times than the number of copies,
when placing complete copies in datacenters.

D. Fault Tolerance

In the case with failures, we find out how failures can
affect the throughput and response times. We apply 10
units of workloads. Two kinds of failures are considered,
i.e. datacenter blackout and failed nodes, but we will
guarantee that no more than F among 2F+1 replicas failed
simultaneously. When 1 unit of failure is applied, some
nodes randomly fail. With 10 units of failures, a whole
datacenter of nodes fail simultaneously. Here, 1 unit of
failure means that there is a failed node every hundred
thousand units of time. Though the units of failures are
different, all failable nodes will fail before every experiment
ends, i.e. only a necessary quorum of replicas are left. The
quorum is computed based on the tolerable failures of the
Paxos algorithm.

Figure 7 shows the throughputs of committed transactions
on failures. The y axis of Figure 7 is in log scale and
the values are multiplied by 500 before applying the
logarithm. Observing the result, we can see that failures
have little influence on the throughputs of SHAFT, but
have great impacts on MDCC’s throughputs of committed
write transactions. When failures happen, SHAFT exhibits a
higher concurrency level than MDCC. When the application
server of MDCC fails, no other nodes can take up the job and
push the transaction to finish, thus leaving the transaction in
the blocking state. In comparison, SHAFT permits failures
of any role and continues to work as long as no more than
tolerable number of acceptor/learner failures happen.

Figure 8 shows the transaction response times on failures.
Comparing to the response times on 10 workload units
in Figure 2, SHAFT’s range of response times widens on
failure conditions, while MDCC’s remain stable. The reason
is that the unsuccessful transactions are aborted or remain
blocked in MDCC. On failures, both the number of retried



transactions and the number of lock-waiting transactions
increase in SHAFT, thus leading to a wider range of
response times. The more failures, the wider the range.
Note that, when each datacenter has a complete copy of
data, the number of copies does not have much influence on
transaction throughput and response times, even on failures.

V. CONCLUSION

Targeting at providing serializable transaction processing
for highly-available datastores, we propose in the paper
SHAFT, a Paxos-based protocol integrating the replication,
concurrency control and commitment procedures. SHAFT
uses pessimistic concurrency control based on distributed
strict two-phase locking. It guarantees serializability, high
availability and fault tolerance simultaneously. Different
from other synchronous transactional replication protocol,
SHAFT allows clients to actively abort a transaction.
In comparison to other Paxos-based proposals, the key
techniques that SHAFT exploits are the different incarnation
and the updated operation semantics of the Paxos algorithm.
SHAFT guarantees strong transaction consistency with fault
tolerance. SHAFT is non-blocking; it tolerates failures of
both clients and servers. Experiments show that SHAFT
outperforms the synchronous transactional replication pro-
tocol MDCC, which outperforms other protocols such as
Megastore.
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