

Demo is not planned.

Malleable Flow for Time-Bounded Replica Consistency Control
Yuqing Zhu

School of Software
Tsinghua University

Beijing 100084, China
zhu-yq@mails.tsinghua.edu.cn

Jianmin Wang
School of Software
Tsinghua University

Beijing 100084, China
jimwang@tsinghua.edu.cn

Philip S. Yu
Dept. of Computer Science

University of Illinois at Chicago
Chicago IL 60607, USA

psyu@uic.edu

1. INTRODUCTION AND MOTIVATION
Replication is one key technique to guarantee favorable

properties of availability, scalability and reliability in large-

scale storage systems. According to CAP theorem, such

storage systems have to sacrifice replica consistency for

availability on network partition. While modern database

systems emphasize correctness, completeness and thus

consistency, large-scale storage systems challenge modern

databases by trading off consistency for availability and

guaranteeing only eventual consistency.

However, the weak eventual consistency cannot satisfy all

application scenarios. The unknown consistency status on

eventual consistency also greatly complicates application

development. Developers demand strong consistency

occasionally, but strong consistency causes high execution

latency and leads to the unavailability under network

partition. This cost is highly undesirable. As replica

consistency is in a trade-off relation with availability and

latency, it is most desirable that the system maximizes

consistency within a user-specified latency.

We thus propose the malleable flow (M-flow) approach that

can control replica consistency to bound execution time. A

system with M-flow supports latency-bounded operations

that maximize replica consistency within the given time.

2. M-FLOW: DECOMPOSE & REFORM
The key idea of M-flow is to decompose the replication

process into an execution flow of minute steps, and reform

a new execution flow by recombining a subset of the steps

that are chosen to meet the time requirement and maximize

replica consistency status. A better consistency status

indicates a shorter latency for a following consistent read;

or, a better consistency status means a more recent value

returned by a following read within the same latency.

M-flow assumes a symmetric architecture, in which nodes

and replicas can be equally accessed. A receiving node

without the corresponding data forwards the received

request to the closest node holding the replica. Execution

results are forwarded back to the receiving nodes and then

returned to the requester. The replication process is from

when the receiving node receives the request till when the

receiving node sends the response.

M-flow first breaks the replication process into six stages,

i.e. reception, transmission, coordination, execution,

compaction and acquisition. The reception stage is when a

write is received by a node. The write is transmitted to

nodes with the corresponding replica in the transmission

stage. Writes must go through a coordination stage before

execution, to guarantee the same write execution sequence

for all replicas in the execution stage, thus avoiding conflict

resolution. The processing of a write can also go through

the compaction stage that helps to speed up the processing

of the acquisition stage when the data value is acquired for

a read. Stage is the basic unit to guarantee durability and

failure tolerance. M-flow then decomposes each stage

further into minute steps, each of which requires only

limited processing time. The steps and their execution order

thus form a directed graph, which consists of six partitions

corresponding to the six stages.

M-flow reforms the new execution flow by recombining the

right subset of steps, i.e., finding a valid path in the graph.

M-flow computes this subset after receiving and before

processing the request. The underlying principles are (1) the

path either covers or bypasses a stage to guarantee

durability and failure tolerance; (2) the step subset is

maximized and its execution time is within the given bound;

(3) the set of writes processed within a step is maximized;

(4) the path for a write covers the reception stage, and that

for a read the acquisition stage. To directly improve replica

consistency status, the numbers of executed and executable

writes are maximized first, thus the maximum number of

writes to be executed is computed from stage execution,

coordination, transmission, to stage compaction. M-flow

borrows the idea from Riemann integral in latency

estimation. The small granularity of step enables execution

time estimation by simple functions. Besides, recent

statistics have greater impacts on the prediction of step

execution time. The total latency is the latency summation

of all chosen steps.

3. CONCLUSION AND VISION
We have implemented M-flow with a different in-memory

storage architecture in the open-source project Cassandra.

Experiments over an actual cluster demonstrate that with

M-flow, (1) the actual response latency is bounded by the

given time; (2) a greater write execution bound leads to a

lower execution latency of a following consistent read; and,

(3) a greater read latency bound leads to the return of more

recently written values.

M-flow is just a first step. One direction for future work is

to find a feasible way of integrating this replica consistency

variance with the traditional transaction framework. M-flow

also opens up a new dimension in providing storage service

with regard to response latency and consistency. Exploring

this new dimension is yet another interesting future work.

Bounded Time & Traded Consistency

Malleable Flow for Time-Bounded Replica Consistency Control

THSS-ISE Lab

Yuqing Zhu
1
, Jianmin Wang

1
, Philip S. Yu

2

1
Tsinghua University, School of Software

2
University of Illinois at Chicago, Dept. of Computer Science

- Decompose the replication process into an execution flow of minute

steps

- Reform a new execution flow by recombining a subset of the steps that

o Meets the time requirement

o Maximizes replica consistency status

o Guarantees durability and fault tolerance

Big Picture

Motivation

Key Idea

The Malleable Flow

Implementation over Cassandra

* This work is supported by the National Science and Technology Major Special Projects of China under Grant No. 2010ZX01042-002-002-01, and the National Natural Science Foundation of China under Grant No. 61073005.

- Replication is important for availability, scalability and reliability in

large-scale systems.

- Trade-off between replica consistency and availability, latency

- Guaranteeing best replica consistency within a given latency

o Desirable but not provided

Bounded Latencies (the

given latency bounds versus

the measured 99 percentile

latencies):

- M-flow can control the

general trend on

achieving the latency

versus consistency

trade-offs.

Consistency and latency

under different cross-DC

bandwidths (the number of

returned values vs. the given

read latency constraints):

- A larger latency bound

for instantaneous reads

following writes lead

to a larger number of

returned values.

Principles for reformation:

- The path either covers or

bypasses a stage

- The step subset is

maximized with execution

time bounded

- The set of writes processed

within a step is maximized
o Computed from execution,

coordination, transmission,

to compaction

o Increasing executed and

executable writes to

improve the status of

replica consistency

- The path for a write covers

Stage reception; that for a

read Stage acquisition

Execution

Coordination

Transmission

Compaction

The decomposed

steps and their

execution order

form a directed

graph, consisting

of six partitions

corresponding to

the six stages.

A system with malleable flow (M-flow) supports latency-bounded

operations that maximize replica consistency within the given time.

Symmetric architecture is assumed. A receiving node forwards a request

to the closest node holding the replica. Execution results are forwarded

back to the receiving nodes and then returned to the requester. The

replication process, starting from when the request is received till when

the response is sent, is decomposed into six stages, i.e. reception,

transmission, coordination, execution, compaction and acquisition.

The M-flow replication strategy allows update-anywhere, eager

synchronous and lazy asynchronous replication simultaneously. The

decomposed replication process enables this flexibility and the control

of replica consistency (and latency) by reforming a suitable execution

process with carefully selected stages and writes.

D
E
C

O
M

P
O

S
E

R
E
F
O

R
M

The storage

architecture

guarantees the

durability of writes,

and enables the

execution flow to

stop at the end of

any stage.

